Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;8(11):5020-30.
doi: 10.1021/pr900449e.

In-depth profiling of post-translational modifications on the related transcription factor complexes TFIID and SAGA

Affiliations

In-depth profiling of post-translational modifications on the related transcription factor complexes TFIID and SAGA

Nikolai Mischerikow et al. J Proteome Res. 2009 Nov.

Abstract

The basal transcription factor TFIID and the chromatin-modifying complex SAGA, which have several subunits in common, are crucial for transcription regulation. Here, we describe an in-depth profiling of post-translational modifications (PTMs) on both TFIID and SAGA from yeast. We took a multipronged approach using high-resolution mass spectrometry (LC-MS) in combination with the proteases Trypsin, Chymotrypsin and Glu-C. The cumulative peptide identification data, at a false discovery rate <1%, allowed us to cover most TFIID and SAGA subunit sequences to near completion. Additionally, for TFIID/SAGA subunits, we identified 118/102 unique phosphorylated and 54/61 unique lysine acetylated sites. Especially, several lysine residues on the SAGA subunits Spt7p and Sgf73p were found to be acetylated. Using a spectral counting approach, we found that the shared subunit TAF5p is phosphorylated to a significant greater extent in SAGA than in TFIID. Finally, we were able to map for the first time the cleavage site in Spt7p that is related to formation of the SAGA-like complex SLIK/SALSA. In general, our combination of tandem affinity enrichment, digestion with different proteases, extensive prefractionation and high-resolution LC-MS identifies a large number of PTMs of TFIID and SAGA/SLIK that might aid in future functional studies on these transcription factors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms