Small RNAs and small proteins involved in resistance to cell envelope stress and acid shock in Escherichia coli: analysis of a bar-coded mutant collection
- PMID: 19734312
- PMCID: PMC2798238
- DOI: 10.1128/JB.00873-09
Small RNAs and small proteins involved in resistance to cell envelope stress and acid shock in Escherichia coli: analysis of a bar-coded mutant collection
Abstract
More than 80 small regulatory RNAs (sRNAs) and 60 proteins of 16 to 50 amino acids (small proteins) are encoded in the Escherichia coli genome. The vast majority of the corresponding genes have no known function. We screened 125 DNA bar-coded mutants to identify novel cell envelope stress and acute acid shock phenotypes associated with deletions of genes coding for sRNAs and small proteins. Nine deletion mutants (ssrA, micA, ybaM, ryeF, yqcG, sroH, ybhT, yobF, and glmY) were sensitive to cell envelope stress and two were resistant (rybB and blr). Deletion mutants of genes coding for four small proteins (yqgB, mgrB, yobF, and yceO) were sensitive to acute acid stress. We confirmed each of these phenotypes in one-on-one competition assays against otherwise-wild-type lacZ mutant cells. A more detailed investigation of the SsrA phenotype suggests that ribosome release is critical for resistance to cell envelope stress. The bar-coded deletion collection we generated can be screened for sensitivity or resistance to virtually any stress condition.
Figures







Comment in
-
Global approaches for finding small RNA and small open reading frame functions.J Bacteriol. 2010 Jan;192(1):26-8. doi: 10.1128/JB.01316-09. J Bacteriol. 2010. PMID: 19854892 Free PMC article. No abstract available.
Similar articles
-
The small noncoding DsrA RNA is an acid resistance regulator in Escherichia coli.J Bacteriol. 2004 Sep;186(18):6179-85. doi: 10.1128/JB.186.18.6179-6185.2004. J Bacteriol. 2004. PMID: 15342588 Free PMC article.
-
Effect of the RNA pyrophosphohydrolase RppH on envelope integrity in Escherichia coli.FEMS Microbiol Lett. 2017 Aug 15;364(15). doi: 10.1093/femsle/fnx152. FEMS Microbiol Lett. 2017. PMID: 28859318
-
Differential expression of small RNAs under chemical stress and fed-batch fermentation in E. coli.BMC Genomics. 2015 Dec 10;16:1051. doi: 10.1186/s12864-015-2231-8. BMC Genomics. 2015. PMID: 26653712 Free PMC article.
-
How to find small non-coding RNAs in bacteria.Biol Chem. 2005 Dec;386(12):1219-38. doi: 10.1515/BC.2005.140. Biol Chem. 2005. PMID: 16336117 Review.
-
Modulating the outer membrane with small RNAs.Genes Dev. 2006 Sep 1;20(17):2338-48. doi: 10.1101/gad.1457506. Genes Dev. 2006. PMID: 16951250 Review.
Cited by
-
Matrix Linear Models for High-Throughput Chemical Genetic Screens.Genetics. 2019 Aug;212(4):1063-1073. doi: 10.1534/genetics.119.302299. Epub 2019 Jun 26. Genetics. 2019. PMID: 31243057 Free PMC article.
-
An integrated approach for finding overlooked genes in Shigella.PLoS One. 2011 Apr 5;6(4):e18509. doi: 10.1371/journal.pone.0018509. PLoS One. 2011. PMID: 21483688 Free PMC article.
-
Cellular Effects of 2',3'-Cyclic Nucleotide Monophosphates in Gram-Negative Bacteria.J Bacteriol. 2022 Jan 18;204(1):e0020821. doi: 10.1128/JB.00208-21. Epub 2021 Oct 18. J Bacteriol. 2022. PMID: 34662237 Free PMC article.
-
Genome wide interactions of wild-type and activator bypass forms of σ54.Nucleic Acids Res. 2015 Sep 3;43(15):7280-91. doi: 10.1093/nar/gkv597. Epub 2015 Jun 16. Nucleic Acids Res. 2015. PMID: 26082500 Free PMC article.
-
Systematic investigation of recipient cell genetic requirements reveals important surface receptors for conjugative transfer of IncI2 plasmids.Commun Biol. 2023 Nov 16;6(1):1172. doi: 10.1038/s42003-023-05534-2. Commun Biol. 2023. PMID: 37973843 Free PMC article.
References
-
- Altuvia, S. 2007. Identification of bacterial small non-coding RNAs: experimental approaches. Curr. Opin. Microbiol. 10:257-261. - PubMed
-
- Bos, M. P., V. Robert, and J. Tommassen. 2007. Biogenesis of the Gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 61:191-214. - PubMed
-
- Boyle, S. M., G. D. Markham, E. W. Hafner, J. M. Wright, H. Tabor, and C. W. Tabor. 1984. Expression of the cloned genes encoding the putrescine biosynthetic enzymes and methionine adenosyltransferase of Escherichia coli (speA, speB, speC and metK). Gene 30:129-136. - PubMed
-
- Butland, G., M. Babu, J. J. Diaz-Mejia, F. Bohdana, S. Phanse, B. Gold, W. Yang, J. Li, A. G. Gagarinova, O. Pogoutse, H. Mori, B. L. Wanner, H. Lo, J. Wasniewski, C. Christopolous, M. Ali, P. Venn, A. Safavi-Naini, N. Sourour, S. Caron, J. Y. Choi, L. Laigle, A. Nazarians-Armavil, A. Deshpande, S. Joe, K. A. Datsenko, N. Yamamoto, B. J. Andrews, C. Boone, H. Ding, B. Sheikh, G. Moreno-Hagelseib, J. F. Greenblatt, and A. Emili. 2008. eSGA: E. coli synthetic genetic array analysis. Nat. Methods 5:789-795. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases