Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep 9;28(1):126.
doi: 10.1186/1756-9966-28-126.

Mining novel biomarkers for prognosis of gastric cancer with serum proteomics

Affiliations

Mining novel biomarkers for prognosis of gastric cancer with serum proteomics

Fu-Ming Qiu et al. J Exp Clin Cancer Res. .

Abstract

Background: Although gastric cancer (GC) remains the second cause of cancer-related death, useful biomarkers for prognosis are still unavailable. We present here the attempt of mining novel biomarkers for GC prognosis by using serum proteomics.

Methods: Sera from 43 GC patients and 41 controls with gastritis as Group 1 and 11 GC patients as Group 2 was successively detected by Surface Enhanced Laser Desorption/ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS) with Q10 chip. Peaks were acquired by Ciphergen ProteinChip Software 3.2.0 and analyzed by Zhejiang University-ProteinChip Data Analysis System (ZJU-PDAS). CEA level were evaluated by chemiluminescence immunoassay.

Results: After median follow-up periods of 33 months, Group 1 with 4 GC patients lost was divided into 20 good-prognosis GC patients (overall survival more than 24 months) and 19 poor-prognosis GC patients (no more than 24 months). The established prognosis pattern consisted of 5 novel prognosis biomarkers with 84.2% sensitivity and 85.0% specificity, which were significantly higher than those of carcinoembryonic antigen (CEA) and TNM stage. We also tested prognosis pattern blindly in Group 2 with 66.7% sensitivity and 80.0% specificity. Moreover, we found that 4474-Da peak elevated significantly in GC and was associated with advanced stage (III+IV) and short survival (p < 0.03).

Conclusion: We have identified a number of novel biomarkers for prognosis prediction of GC by using SELDI-TOF-MS combined with sophisticated bioinformatics. Particularly, elevated expression of 4474-Da peak showed very promising to be developed into a novel biomarker associated with biologically aggressive features of GC.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Survival curve for all included GC patients, good-prognosis and poor-prognosis GC patients. The media survival time (months) for all included GC patients (n = 54), poor- prognosis (n = 25) and good-prognosis GC patients (n = 25) was 23, 12 and not reached, respectively. There was significantly statistical difference between poor-prognosis and good-prognosis groups (Log-rank test p = 0.00).
Figure 2
Figure 2
The areas under Receiver Operating Characteristic (ROC) curves for prognosis pattern and CEA (A), detection pattern and CEA (B), stage pattern and CEA (C).
Figure 3
Figure 3
Representative expression of the peak at 4474 Da (red) in prognosis pattern. Peak at 4474 Da was significantly higher in poor-prognosis GC (upper panel), compared with good-prognosis GC (lower panel) in biomarker mining set. Wilcoxon Rank Sum p = 0.04.
Figure 4
Figure 4
Representative expression of the peak at 4474 Da (red) in blind test set for prognosis pattern. Peak at 4474 Da was high expressed in poor-prognosis GC (upper panel), compared with good-prognosis GC (lower panel) in blind test with 5 good-prognosis and 6 poor-prognosis GC patients.
Figure 5
Figure 5
Representative expression of the peak at 4474 Da (red) in detection pattern. Peak at 4474 Da was significantly higher in GC (lower panel), compared with non-cancer controls (upper panel). Wilcoxon Rank Sum p < 0.001.
Figure 6
Figure 6
Representative expression of the peak at 4474 Da (red) in stage pattern. Peak at 4474 Da was significantly higher in stage III+IV GC (lower panel), compared with stage I/II GC (upper panel). Wilcoxon Rank Sum p = 0.01.

Similar articles

Cited by

References

    1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108. doi: 10.3322/canjclin.55.2.74. - DOI - PubMed
    1. Yang L. Incidence and mortality of gastric cancer in China. World J Gastroenterol. 2006;12:17–20. - PMC - PubMed
    1. Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002. CA Cancer J Clin. 2002;52:23–47. doi: 10.3322/canjclin.52.1.23. - DOI - PubMed
    1. Martin RC, 2nd, Jaques DP, Brennan MF, Karpeh M. Extended local resection for advanced gastric cancer: increased survival versus increased morbidity. Ann Surg. 2002;236:159–165. doi: 10.1097/00000658-200208000-00003. - DOI - PMC - PubMed
    1. Klein Kranenbarg E, Hermans J, van Krieken JH, Velde CJ van de. Evaluation of the 5th edition of the TNM classification for gastric cancer: improved prognostic value. Br J Cancer. 2001;84:64–71. doi: 10.1054/bjoc.2000.1548. - DOI - PMC - PubMed

Publication types