A protonmotive force drives bacterial flagella
- PMID: 19741
- PMCID: PMC431412
- DOI: 10.1073/pnas.74.7.3060
A protonmotive force drives bacterial flagella
Abstract
Streptococcus strain V4051 is motile in the presence of glucose. The cells move steadily along smooth paths (run), jump about briefly with little net displacement (twiddle), and then run in new directions. They stop swimming when deprived of glucose. These cells become motile when an electrical potential or a pH gradient is imposed across the membrane. Starved cells suspended in a potassium-free medium respond to the addition of valinomycin by a brief period of vigorous twiddling. They also twiddle, although less vigorously, when the external pH is lowered. Valinomycin-induced twiddling occurs in the absence of external alkali or alkaline earth cations and without significant net synthesis of ATP. When a chemoattractant is added to cells swimming in the presence of glucose, twiddles are transiently suppressed, and the cells run for a time. Similarly, when starved cells are suspended in a potassium-free medium containing both valinomycin and an attractant, many cells initially run rather than twiddle. We conclude that the flagella are driven by a protonmotive force.
Similar articles
-
ATP synthesis driven by a protonmotive force in Streptococcus lactis.J Membr Biol. 1975-1976;25(3-4):285-310. doi: 10.1007/BF01868580. J Membr Biol. 1975. PMID: 3650
-
Chemical modification of Streptococcus flagellar motors.J Bacteriol. 1984 Jun;158(3):832-43. doi: 10.1128/jb.158.3.832-843.1984. J Bacteriol. 1984. PMID: 6725210 Free PMC article.
-
A protonmotive force drives ATP synthesis in bacteria.Proc Natl Acad Sci U S A. 1974 Oct;71(10):3896-900. doi: 10.1073/pnas.71.10.3896. Proc Natl Acad Sci U S A. 1974. PMID: 4279406 Free PMC article.
-
[Bacterial flagellar rotation and protonmotive force (author's transl)].Seikagaku. 1979 Sep 25;51(9):1026-31. Seikagaku. 1979. PMID: 118225 Review. Japanese. No abstract available.
-
Using Biophysics to Monitor the Essential Protonmotive Force in Bacteria.Adv Exp Med Biol. 2016;915:69-79. doi: 10.1007/978-3-319-32189-9_6. Adv Exp Med Biol. 2016. PMID: 27193538 Review.
Cited by
-
Viscosity-dependent determinants of Campylobacter jejuni impacting the velocity of flagellar motility.mBio. 2024 Jan 16;15(1):e0254423. doi: 10.1128/mbio.02544-23. Epub 2023 Dec 12. mBio. 2024. PMID: 38085029 Free PMC article.
-
Twists and turns: 40 years of investigating how and why bacteria swim.Microbiology (Reading). 2024 Feb;170(2):001432. doi: 10.1099/mic.0.001432. Microbiology (Reading). 2024. PMID: 38363121 Free PMC article. Review.
-
Roles of the intramolecular disulfide bridge in MotX and MotY, the specific proteins for sodium-driven motors in Vibrio spp.J Bacteriol. 2006 Jul;188(14):5308-14. doi: 10.1128/JB.00187-06. J Bacteriol. 2006. PMID: 16816206 Free PMC article.
-
The bacterial flagellum: reversible rotary propellor and type III export apparatus.J Bacteriol. 1999 Dec;181(23):7149-53. doi: 10.1128/JB.181.23.7149-7153.1999. J Bacteriol. 1999. PMID: 10572114 Free PMC article. Review. No abstract available.
-
What history tells us. XI. The complex history of the chemiosmotic theory.J Biosci. 2007 Dec;32(7):1245-50. doi: 10.1007/s12038-007-0133-x. J Biosci. 2007. PMID: 18202448 No abstract available.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources