Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990 May;40(5):511-4.

[The N-methyl-D-aspartate receptor complex. Various sites of regulation and clinical consequences]

[Article in German]
Affiliations
  • PMID: 1974426
Review

[The N-methyl-D-aspartate receptor complex. Various sites of regulation and clinical consequences]

[Article in German]
L Turski. Arzneimittelforschung. 1990 May.

Abstract

Amino acids such as L-glutamate und L-aspartate are major excitatory neurotransmitters in the mammalian central nervous system (CNS) and potential neurotoxins (excitotoxins), which can destroy central neurons by excessive activation of respective receptors. In the last three decades evidence has accumulated that excitatory amino acids (EAA) are involved in many neurological diseases and that pharmacological intervention offers prospects of novel and more effective therapies. Three different receptor types for EAA have been identified, each being named by the selective agonist to which it is preferentially sensitive, i.e. N-methyl-D-aspartate- (NMDA), kainate- and quisqualate-receptors. In this review interest is focused primarily on the NMDA-receptor, whose structure has been subject of numerous electrophysiological and biochemical studies. Today, it is well established that the NMDA-receptor-ionophore complex has an agonist binding site for glutamate, NMDA and related EAAs which is coupled with an ion channel permeable to Na+, K+, Cl- and Ca2+. Four other binding sites for glycine, phencyclidine, Mg2+ and Zn2+ have been identified which can differentially modulate the function of the NMDA receptor. An additional polyamine binding site has recently been reported. Numerous studies on experimental animals demonstrate that modulators of NMDA-mediated neurotransmission may have antiepileptic, anxiolytic, muscle-relaxant and memory-enhancing effects. Particular interest has gained the possible neuroprotective efficacy of NMDA-receptor antagonists in neurological diseases such as hypoxia/ischemia, hypoglycemia, epilepsy and chronic neurodegenerative disorders (Huntington's, Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, and AIDS encephalopathy).(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources