Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Sep;235(3):308-21.
doi: 10.1111/j.1365-2818.2009.03222.x.

Correlative microscopy: a potent tool for the study of rare or unique cellular and tissue events

Affiliations
Review

Correlative microscopy: a potent tool for the study of rare or unique cellular and tissue events

A A Mironov et al. J Microsc. 2009 Sep.

Abstract

Biological studies have relied on two complementary microscope technologies - light (fluorescence) microscopy and electron microscopy. Light microscopy is used to study phenomena at a global scale to look for unique or rare events, and it also provides an opportunity for live imaging, whereas the forte of electron microscopy is the high resolution. Traditionally light and electron microscopy observations are carried out in different populations of cells/tissues and a 'correlative' inference is drawn. The advent of true correlative light-electron microscopy has allowed high-resolution imaging by electron microscopy of the same structure observed by light microscopy, and in advanced cases by video microscopy. Thus a rare event captured by low-resolution imaging of a population or transient events captured by live imaging can now also be studied at high resolution by electron microscopy. Here, the potential and difficulties of this approach, along with the most impressive breakthroughs obtained by these methods, are discussed.

PubMed Disclaimer

Publication types

MeSH terms

Grants and funding

LinkOut - more resources