Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jan;339(1):7-18.
doi: 10.1007/s00441-009-0864-0. Epub 2009 Sep 12.

Suprastructures of extracellular matrices: paradigms of functions controlled by aggregates rather than molecules

Affiliations
Review

Suprastructures of extracellular matrices: paradigms of functions controlled by aggregates rather than molecules

Peter Bruckner. Cell Tissue Res. 2010 Jan.

Abstract

Extracellular matrices (ECM) not only serve as structural scaffolds in organs and tissues, but also determine critical cellular functions through cell-matrix interactions. These are mediated by cell surface receptors that recognise specific structural features of ECMs and, hence, overall physical properties of the acellular environment. ECM structures are subject to hierarchic organisations, which are tightly adapted to the functions of tissues and organs. Only a few specialised tasks are reserved for isolated ECM macromolecules. Instead, molecular ECM components attain their prominent functions only after polymerising into insoluble suprastructural elements, i.e. fibrils, microfibrils, or networks that, in turn, are assembled into regional tissue structures, such as fibres or basement membranes. As an outstanding feature, most, if not all, ECM suprastructures are co-polymers of more than one molecular species that differ in their identity and relative abundance. Thus, ECM suprastructures are composite biological amalgamates. The analogy to metal alloys refers to structural and functional characteristics of ECM composites, which differ from those of each homo-polymeric aggregate. At the tissue level, biological alloys can themselves be assembled into conglomerates that again assume properties distinct from those of each individual alloy. Nevertheless, most studies in matrix biology solely focus on molecular features and mechanisms. Progress has however been made in identifying principles of interactions within suprastructural elements and their functional consequences. We are now only beginning to understand the impact of suprastructural organisation on the assembly and the functions of whole tissues and many fundamental issues in this almost pristine field await discovery.

PubMed Disclaimer

MeSH terms

LinkOut - more resources