Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;4(5):733-45.
doi: 10.2217/rme.09.43.

Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy

Affiliations

Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy

Arghya Paul et al. Regen Med. 2009 Sep.

Abstract

Stem cells have the unique properties of self-renewal, pluripotency and a high proliferative capability, which contributes to a large biomass potential. Hence, these cells act as a useful source for acquiring renewable adult cell lines. This, in turn, acts as a potent therapeutic tool to treat various diseases related to the heart, liver and kidney, as well as neurodegenerative diseases such as Parkinson's and Alzheimer's disease. However, a major problem that must be overcome before it can be effectively implemented into the clinical setting is a suitable delivery system that can retain an optimal quantity of the cells at the targeted site for a maximal clinical benefit; a system that will give a mechanical as well as an immune protection to the foreign cells, while at the same time enhancing the yields of differentiated cells, maintaining cell microenvironments and sustaining the differentiated cell functions. To address this issue we opted for a novel delivery system, termed the 'artificial cells', which are semipermeable microcapsules with strong and thin multilayer membrane components with specific mass transport properties. Here, we briefly introduce the concept of artificial cells for encapsulation of stem cells and investigate the application of microencapsulation technology as an ideal tool for all stem transplantations and relate their role to the emerging field of cellular cardiomyoplasty.

PubMed Disclaimer

Publication types

LinkOut - more resources