Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;30(35):6687-94.
doi: 10.1016/j.biomaterials.2009.08.036. Epub 2009 Sep 16.

The relative roles of collagen adhesive receptor DDR2 activation and matrix stiffness on the downregulation of focal adhesion kinase in vascular smooth muscle cells

Affiliations

The relative roles of collagen adhesive receptor DDR2 activation and matrix stiffness on the downregulation of focal adhesion kinase in vascular smooth muscle cells

Kiran Bhadriraju et al. Biomaterials. 2009 Dec.

Abstract

Cells within tissues derive mechanical anchorage and specific molecular signals from the insoluble extracellular matrix (ECM) that surrounds them. Understanding the role of different cues that extracellular matrices provide cells is critical for controlling and predicting cell response to scaffolding materials. Using an engineered extracellular matrix of Type I collagen we examined how the stiffness, supramolecular structure, and glycosylation of collagen matrices influence the protein levels of cellular FAK and the activation of myosin II. Our results show that (1) cellular FAK is downregulated on collagen fibrils, but not on a non-fibrillar monolayer of collagen, (2) the downregulation of FAK is independent of the stiffness of the collagen fibrils, and (3) FAK levels are correlated with levels of tyrosine phosphorylation of the collagen adhesion receptor DDR2. Further, siRNA depletion of DDR2 blocks FAK downregulation. Our results suggest that the collagen receptor DDR2 is involved in the regulation of FAK levels in vSMC adhered to Type I collagen matrices, and that regulation of FAK levels in these cells appears to be independent of matrix stiffness.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources