Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;12(2):87-97.
Epub 2009 Sep 18.

Autophagy, prion infection and their mutual interactions

Affiliations
  • PMID: 19767652
Free article
Review

Autophagy, prion infection and their mutual interactions

Andreas Heiseke et al. Curr Issues Mol Biol. 2010.
Free article

Abstract

Prion diseases are infectious and fatal neurodegenerative disorders of man and animals which are characterized by spongiform degeneration in the central nervous system. Prion propagation involves the endocytic pathway and endosomal and lysosomal compartments are implicated in trafficking and re-cycling as well as final degradation of prions. Shifting the equilibrium between propagation and lysosomal clearance to the latter impairs cellular prion load. This and earlier findings of autophagic vacuoles in correlation to prion infections both in in vitro and in vivo studies prompted us and others to analyze the role of autophagy in prion infection. Autophagy is a fundamental cellular bulk degradation process for e.g. organelles or cytoplasmic proteins which has many implications for physiology and patho-physiology of cells and whole organisms. In various neurodegenerative disease models mainly protective functions of autophagy were recently described. In this review, we focus on recent findings which correlate autophagy and its manipulations with prion infection scenarios, and discuss perspectives and future directions. The findings summarized here add to the knowledge of the role of autophagy in neurodegeneration and provide interesting new insight into how non-cytosolic aggregated proteins might be subjected to autophagic clearance.

PubMed Disclaimer

Publication types

LinkOut - more resources