Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 1;26(3):189-198.
doi: 10.1080/01490450902724840.

Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of alpha-Proteobacteria from the order Rhizobiales

Affiliations

Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of alpha-Proteobacteria from the order Rhizobiales

C R Anderson et al. Geomicrobiol J. .

Abstract

Several closely related Mn(II)-oxidizing alpha-Proteobacteria were isolated from very different marine environments: strain SI85-9A1 from the oxic/anoxic interface of a stratified Canadian fjord, strain HTCC 2156 from the surface waters off the Oregon coast, and strain AE01 from the dorsal surface of a hydrothermal vent tubeworm. 16S rRNA analysis reveals that these isolates are part of a tight phylogenetic cluster with previously characterized members of the genus Aurantimonas. Other organisms within this clade have been isolated from disparate environments such as surface waters of the Arctic and Mediterranean seas, a deep-sea hydrothermal plume, and a Caribbean coral. Further analysis of all these strains revealed that many of them are capable of oxidizing dissolved Mn(II) and producing particulate Mn(III/IV) oxides. Strains SI85-9A1 and HTCC 2156 were characterized further. Despite sharing nearly identical 16S rRNA gene sequences with the previously described Aurantimonas coralicida, whole genome DNA-DNA hybridization indicated that their overall genomic similarity is low. Polyphasic phenotype characterization further supported distinguishing characteristics among these bacteria. Thus SI85-9A1 and HTCC 2156 are described as two new species within the family 'Aurantimionadaceae': Aurantimonas manganoxydans sp. nov. and Aurantimonas litoralis sp. nov. This clade of bacteria is widely distributed around the globe and may be important contributors to Mn cycling in many environments. Our results highlight the difficulty in utilizing 16S rRNA-based approaches to investigate the microbial ecology of Mn(II) oxidation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phylogeny of Mn(II) oxidizing alpha-Proteobacteria based on the16S rRNA gene. Mn(II) oxidizers are indicated with “+”, isolates that have been tested and do not oxidize Mn(II) are indicated with “−”, and “+/−” indicates weak or inconsistent Mn(II) oxidation.

References

    1. Alayse-Danet AM, Desbruyeres D, Gaill F. The possible nutritional or detoxification role of the epibiotic bacteria of Alvinellid polychaetes: Review of current data. Symbiosis. 1987;4:51–62.
    1. Campbell BJ, Cary SC. Characterization of a novel spirochete associated with the hydrothermal vent polychaete annelid, Alvinella pompejana. Appl Environ Microbiol. 2001;67:110–7. - PMC - PubMed
    1. Caspi R, Haygood MG, Tebo BM. Unusual ribulose-1,5-bisphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology. 1996;142:2549–2559. - PubMed
    1. Cho JC, Giovannoni SJ. Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order “Rhizobiales”. Int J Syst Evol Microbiol. 2003;53:1853–9. - PubMed
    1. Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol. 2002;68:3878–85. - PMC - PubMed

LinkOut - more resources