Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Nov;54(5):1043-9.
doi: 10.1161/HYPERTENSIONAHA.109.139451. Epub 2009 Sep 21.

Sildenafil increases endothelial progenitor cell function and improves ischemia-induced neovascularization in hypercholesterolemic apolipoprotein E-deficient mice

Affiliations
Comparative Study

Sildenafil increases endothelial progenitor cell function and improves ischemia-induced neovascularization in hypercholesterolemic apolipoprotein E-deficient mice

Sylvie Dussault et al. Hypertension. 2009 Nov.

Abstract

Hypercholesterolemia is associated with impaired neovascularization in response to ischemia. Potential mechanisms include defective NO bioactivity and a reduction in the number/function of endothelial progenitor cells (EPCs). Here we tested the hypothesis that sildenafil, a phosphodiesterase 5 inhibitor that increases NO-driven cGMP levels, could stimulate EPC function and improve ischemia-induced neovascularization in hypercholesterolemic conditions. Apolipoprotein E-deficient (ApoE(-/-)) mice were treated (or not treated) with sildenafil (40 mg/kg per day in water), and hindlimb ischemia was surgically induced by femoral artery removal. Sildenafil treatment led to an improved blood flow recovery, an increased capillary density, and a reduction of oxidative stress levels in ischemic muscles at day 7 after surgery. Sildenafil therapy is associated with an increased activation of angiogenic transduction pathways, including Akt, p44/42 mitogen-activated protein kinase, and p38. In vitro, sildenafil increases cellular migration and tubule formation of mature endothelial cells (human umbilical vascular endothelial cells) in a cGMP-dependent manner. In vivo, ApoE(-/-) mice treated with sildenafil exhibit a significant increase in the number of bone marrow-derived EPCs. Moreover, the angiogenic activities of EPCs (migration and adhesion) are significantly improved in ApoE(-/-) mice treated with sildenafil. In summary, this study demonstrates that sildenafil treatment is associated with improved ischemia-induced neovascularization in hypercholesterolemic ApoE(-/-) mice. The mechanisms involve beneficial effects on angiogenic transduction pathways together with an increase in the number and the functional activity of EPCs. Sildenafil could constitute a novel therapeutic strategy to reduce tissue ischemia in atherosclerotic diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources