Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990;36(1):115-20.
doi: 10.1016/0306-4522(90)90355-8.

D-aspartate release from cerebellar astrocytes: modulation of the high K-induced release by neurotransmitter amino acids

Affiliations

D-aspartate release from cerebellar astrocytes: modulation of the high K-induced release by neurotransmitter amino acids

I Holopainen et al. Neuroscience. 1990.

Abstract

The properties of D-aspartate release were studied in cerebellar astrocytes (14-15 DIV) in primary cultures in the rat. The spontaneous release of D-aspartate from astrocytes was fast, being further enhanced in Na- and Ca-free (EDTA-containing) media. Kainate, quisqualate, D-aspartate and L-glutamate stimulated the release, whereas L-glutamatediethylester was inhibitory. The release was enhanced by veratridine and high K (50 mM). Substitution of chloride by acetate in the experimental medium did not change the basal release but slightly decreased the potassium-induced release, indicating that the high K-induced D-aspartate release is primarily due to depolarization of cells. The K-stimulated release was independent of extracellular Ca2+ and potentiated by kainate and quisqualate. The effect of kainate was reduced by kynurenate, and that of quisqualate by L-glutamatediethylester. Glycine, taurine and GABA were equally effective in depressing the stimulated release of D-aspartate. The inhibition of GABA could be blocked by GABA antagonists. The results suggest that inhibitory amino acids may be involved in the regulation of glutamate release from cerebellar astrocytes. A further implication is that cerebellar astrocytes possess functional glutamate receptors of kainate and quisqualate subtypes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources