Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;70(17-18):2034-9.
doi: 10.1016/j.phytochem.2009.08.014. Epub 2009 Sep 19.

Distribution of heterocyst glycolipids in cyanobacteria

Affiliations

Distribution of heterocyst glycolipids in cyanobacteria

Thorsten Bauersachs et al. Phytochemistry. 2009 Dec.

Abstract

Thirty-four axenic strains of cyanobacteria were analysed for their glycolipid content using high performance liquid chromatography coupled to electrospray ionisation tandem mass spectrometry (HPLC/ESI-MS(2)). Species of the families Nostocaceae and Rivulariaceae, capable of biosynthesising heterocysts, contained a suite of glycolipids consisting of sugar moieties glycosidically bound to long-chain diols, triols, keto-ols and keto-diols. The aglycone moiety consisted of C(26) or C(28) carbon-chains with hydroxyl groups at the C-3, omega-1 or omega-3 positions. Keto-ols and keto-diols contained their carbonyl functionalities likely at the C-3 position. These compounds were absent in all analysed unicellular and filamentous non-heterocystous cyanobacteria and in the heterocyst-forming cyanobacterium Anabaena CCY9922 grown in the presence of combined nitrogen, supporting the idea that the long-chain glycolipids are an important and unique structural component of the heterocyst cell envelope. The glycolipids 1-(O-hexose)-3,25-hexacosanediol and 1-(O-hexose)-3-keto-25-hexacosanol were ubiquitously distributed in species of the family Nostocaceae. 1-(O-hexose)-3,25,27-octacosanetriol and 1-(O-hexose)-3-keto-25,27-octacosanediol were dominant in members of the Calothrix genus, while traces of those compounds were detected only in one species of the Nostocaceae family. Their distribution in heterocystous cyanobacteria suggests a chemotaxonomic relevance that might allow distinguishing between species of different genera. Culture experiments indicate that the amount of keto-ols and keto-diols decreases relatively to their corresponding diols and triols counterparts with increasing temperature. Possibly, this is an adaptation to optimise the cell wall gas permeability, preventing inactivation of the oxygen-sensitive nitrogenase while allowing the highest diffusion of atmospheric dinitrogen into the heterocyst.

PubMed Disclaimer

Publication types

LinkOut - more resources