Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 15;81(20):8564-70.
doi: 10.1021/ac9015424.

Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy

Affiliations

Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy

Hoi-Ying N Holman et al. Anal Chem. .

Abstract

Real-time chemical imaging of bacterial activities can facilitate a comprehensive understanding of the dynamics of biofilm structures and functions. Synchrotron-radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy can yield high spatial resolution and label-free vibrational signatures of chemical bonds in biomolecules, but the abundance of water in biofilms has hindered SR-FTIR's sensitivity in investigating bacterial activity. We developed a simple open-channel microfluidic system that can circumvent the water-absorption barrier for chemical imaging of the developmental dynamics of bacterial biofilms with a spatial resolution of several micrometers. This system maintains a 10 microm thick laminar-flow-through biofilm system that minimizes both the imaging volume in liquid and the signal interference from geometry-induced fringing. Here we demonstrate the ability of the open-channel microfluidic platform to maintain the functionality of living cells while enabling high-quality SR-FTIR measurements. We include several applications that show how microbes in biofilms adapt to their immediate environments. The ability to directly monitor and map bacterial changes in biofilms can yield significant insight into a wide range of microbial systems, especially when coupled to more sophisticated microfluidic platforms.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources