Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep 25:9:7.

Soluble MHC-peptide complexes: tools for the monitoring of T cell responses in clinical trials and basic research

Affiliations

Soluble MHC-peptide complexes: tools for the monitoring of T cell responses in clinical trials and basic research

Philippe Guillaume et al. Cancer Immun. .

Abstract

Soluble MHC-peptide complexes, commonly known as tetramers, allow the detection and isolation of antigen-specific T cells. Although other types of soluble MHC-peptide complexes have been introduced, the most commonly used MHC class I staining reagents are those originally described by Altman and Davis. As these reagents have become an essential tool for T cell analysis, it is important to have a large repertoire of such reagents to cover a broad range of applications in cancer research and clinical trials. Our tetramer collection currently comprises 228 human and 60 mouse tetramers and new reagents are continuously being added. For the MHC II tetramers, the list currently contains 21 human (HLA-DR, DQ and DP) and 5 mouse (I-A(b)) tetramers. Quantitative enumeration of antigen-specific T cells by tetramer staining, especially at low frequencies, critically depends on the quality of the tetramers and on the staining procedures. For conclusive longitudinal monitoring, standardized reagents and analysis protocols need to be used. This is especially true for the monitoring of antigen-specific CD4+ T cells, as there are large variations in the quality of MHC II tetramers and staining conditions. This commentary provides an overview of our tetramer collection and indications on how tetramers should be used to obtain optimal results.

PubMed Disclaimer

References

    1. Chattopadhyay PK, Melenhorst JJ, Ladell K, Gostick E, Scheinberg P, Barrett AJ, Wooldridge L, Roederer M, Sewell AK, Price DA. Techniques to improve the direct ex vivo detection of low frequency antigen-specific CD8+ T cells with peptide-major histocompatibility complex class I tetramers. Cytometry. 2008;73:1001–1009. - PMC - PubMed
    1. Bakker AH, Schumacher TN. MHC multimer technology: current status and future prospects. Curr Opin Immunol. 2005;17:428–433. - PubMed
    1. Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology. 2009;126:147–164. - PMC - PubMed
    1. Vollers SS, Stern LJ. Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology. 2008;123:305–313. - PMC - PubMed
    1. James EA, LaFond R, Durinovic-Bello I, Kwok W. Visualizing antigen specific CD4+ T cells using MHC class II tetramers. J Vis Exp. 2009;(25) pii: 1167. doi: 10.3791/1167. - PMC - PubMed

Publication types

LinkOut - more resources