Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;5(9):e1000593.
doi: 10.1371/journal.ppat.1000593. Epub 2009 Sep 25.

Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation

Affiliations

Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation

Kuo-Feng Weng et al. PLoS Pathog. 2009 Sep.

Abstract

Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell-virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71) 3C protease (3C(pro)) cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3' pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3C(pro). CstF-64 was cleaved in vitro by 3C(pro) but neither by mutant 3C(pro) (in which the catalytic site was inactivated) nor by another EV71 protease 2A(pro). Serial mutagenesis was performed in CstF-64, revealing that the 3C(pro) cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500). An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3'-end pre-mRNA processing and polyadenylation in 3C(pro)-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3C(pro) cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Identification of potential EV71 3Cpro substrates by 2D gels.
(A) A [35S]-labeled peptide which contains part of EV71 viral polyprotein was treated with wild-type 3Cpro(WT) or mutant 3Cpro (C147S). The uncleaved peptide precursor and 3Cpro cleavage product was indicated. (B) Full scale of 2D gels for one of the six in vitro cleavage experiments; left panel shows results obtained using the mutant 3Cpro-treated nuclear extract (3Cmut); right panel shows the results obtained using wild-type 3Cpro-treated nuclear extract (3CWT). Arrows indicate location of CstF-64. (C) Six in vitro cleavage experiments on 2D gels. Arrows indicate location of CstF-64 protein on mutant 3Cpro-treated nuclear extracts gels; circles indicate the corresponding regions on wild-type 3Cpro-treated nuclear extract gels.
Figure 2
Figure 2. CstF-64 in 3Cpro-treated nuclear extract.
(A) CstF-64 proteins in nuclear extracts from SF268, RD and HeLa cells were detected using anti-CstF-64 antibodies. Untreated nuclear extracts (-) were loaded as controls. The amount of CstF64 in wild-type 3Cpro treated nuclear extracts (WT) and in mutant 3Cpro-treated nuclear extracts (C147S) were showen. A cleavage product of 55 kDa was indicated (*). PCNA (proliferatory cell nuclear antigen) detection was employed as the loading control. (B) CstF-64 protein in RD nuclear extract treated with various quantities of 3Cpro - 0.5 µg , 1 µg, 2 µg , 4 µg and 5 µg (lanes 3 to 7) and in the mutant 3C-treated nuclear extract (C147S) or untreated nuclear extract (-) were shown. (C) eIF4-GI in wild-type (WT) and mutant 2Apro (C110S) treated RD cell extracts were detected using specific antibody (lanes 1–3). CstF-64 in 2Apro or mutant 2Apro-treated nuclear extract was also detected (lanes 4–6).
Figure 3
Figure 3. CstF-64 in EV71-infected cells.
(A) After RD cells have been infected with EV71 (m.o.i. = 40), 3Cpro and CstF-64 protein in total cellular proteins of infected RD cells (+) or mock infected cells (-) were detected at various hours post-infection (h.p.i.) using specific antibodies. A potential cleavage product of CstF-64 was also indicated (*). The detection of β-actin was used as a loading control (B) RD cells with transient FLAG-CstF-64 overexpression were also infected with EV71 at an m.o.i. of 40 and the total cellular proteins from mock infected (-) and infected cells (+) were harvested at 6 and 8 h.p.i.. FLAG-CstF-64 was detected using FLAG-specific antibody. The other cleaved FLAG-peptides were indicated as CP1 and CP2 (C) Cytoplasmic (C) and nuclear (N) fractions from EV71-infected RD cells at 8 h.p.i. were extracted and CstF-64 or 3Cpro in each of the fractions were detected using specific antibodies. Detections of β-actin and histon deacetylase (HDAC) were used as cytoplasmic and nucleus protein controls. (D) The locations of CstF-64 in uninfected (Mock) or EV71-infected cells at 2, 4, 6, 8 and 10 h.p.i. were detected using specific antibody. The detection of viral 2B protein was applied as an infection-positive marker. The nuclei of cells were stained using Hoechst dye.
Figure 4
Figure 4. 3Cpro cleaves recombinant CstF-64 protein in vitro.
(A) To locate the 3Cpro cleavage sites on CstF-64, [35S]-labeled CstF-64 and numerous partial CstF-64 peptides which contain 1st–220th, 221st–409th, 410th–577th, 110th–409th, 221st–469th amino acids of CstF-64 were generated based on the functional domains of CstF-64, including RNA recognition motif (RRM), hinge domain, Pro/Gly rich domains (P/G), MEARA sequence, and C-terminal domain (C-ter) as displayed in (B). These untreated [35S]-labeled peptides (-) and those were treated with wild-type 3Cpro (WT) and mutant 3Cpro (C147S) were analyzed in SDS-PAGE. The mass of cleavage products and suspected cleavage sites (arrows) are summarized in (B), indicating that the predicted 3Cpro cleavage sites of full-length CstF-64 are around the amino acid positions 250 and 500 of CstF-64. (C) The untreated [35S]-labeled CstF-64 proteins (-) and those incubated with catalytic mutant 3C protein (C147S) or wild-type 3Cpro (WT) with various incubation times (15, 30, 60, 90, 120, 150 and 180 minutes) were analyzed in SDS-PAGE. The cleavage products of 55 kDa (p55), 35 kDa (p35), 30 kDa (p30) and 25 kDa (p25) were also indicated.
Figure 5
Figure 5. Multiple 3Cpro cleavage sites around the amino acid positions 250 and 500 of CstF-64 in vitro.
(A) Gln/Gly (Q/G) junctions located around amino acid positions 250 and 500 of CstF-64, including Gln251, 483, 496, 505, 510 and 515. (B) Predicted size of 3Cpro cleavage products on CstF-64 with mutations at the cleavage site close to amino acid position 250 of CstF-64 (250) or at both the cleavage sites at positions 250 and 500 (250+500). (C) Wild-type 3Cpro (WT) or mutant 3Cpro (C147S)-treated [35S]-labeled CstF-64(Q251A) with a single Gln483, 496, 505, 510 or 515 (Q483A, Q496A, Q505A, Q510A, Q515A) mutation (D) Wild-type 3Cpro (WT) or mutant 3Cpro (C147S)-treated [35S]-labeled CstF-64(Q251A) or CstF-64(Q251A) with multiple mutations of Q483A, Q496A, Q505A, Q510A and Q515A.
Figure 6
Figure 6. Pre-mRNA and poly(A)-mRNA in EV71-infected cells.
(A) Primers that target the region downstream of the polyadenylation site and poly(A) tail sequence, were designed to detect pre-mRNA and poly(A) mRNA of GFP. (B) After plasmid pEGFP was transfected into the RD cells, cells were infected with EV71 and total RNA of infected cells was harvested at 6 and 8 h.p.i. for RT-PCR assay. RT-PCR results demonstrate the accumulation of pre-mRNA and the reduction of poly(A)-mRNA in EV71-infected cells at six and eight hours post-infection (h.p.i.). Following calibration to the total amount of GFP RNA, the fold changes from the amount of pre-mRNA and poly(A)-RNA in mock-infected cells (Mock) to that of EV71-infected cells (EV71) were calculated. (C) The endogenous pre-mRNA and poly(A)-mRNA of Interleukin-10 receptor beta (IL-10RB) in mock or EV71 infected cells at 8 h.p.i. were estimated based on real-time PCR. The relative amounts of pre-mRNA and poly(A)-mRNA were normalized by total IL-10RB RNA.
Figure 7
Figure 7. In vitro 3′-end pre-mRNA processing and polyadenylation of 3Cpro-treated HeLa nuclear extract.
(A) Cleavage and (B) polyadenylation of pre-RNA substrates by untreated nuclear extract (-) or nuclear extracts treated with 3Cpro buffer indicated as B, mutant 3Cpro (C147S) and wild-type 3Cpro (WT) were analyzed. The recruitment of recombinant CstF-64 protein after 3Cpro treatment (WT + CstF-64) was also tested. The un-treated RNA substrate with buffer only was used as a control. The cleavaged producted (clev) and polyadenylated RNA [poly(A)] from nuclear extract-treated pre-mRNA substrate (pre) were indicated.

References

    1. Ho M, Chen ER, Hsu KH, Twu SJ, Chen KT, et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med. 1999;341:929–935. - PubMed
    1. Zhang SB, Liao H, Huang CH, Tan QY, Zhang WL, et al. [Serum types of enterovirus and clinical characteristics of 237 children with hand, foot and mouth disease in Shenzhen]. Zhongguo Dang Dai Er Ke Za Zhi. 2008;10:38–41. - PubMed
    1. AbuBakar S, Chee HY, Al-Kobaisi MF, Xiaoshan J, Chua KB, et al. Identification of enterovirus 71 isolates from an outbreak of hand, foot and mouth disease (HFMD) with fatal cases of encephalomyelitis in Malaysia. Virus Res. 1999;61:1–9. - PubMed
    1. McMinn P, Lindsay K, Perera D, Chan HM, Chan KP, et al. Phylogenetic analysis of enterovirus 71 strains isolated during linked epidemics in Malaysia, Singapore, and Western Australia. J Virol. 2001;75:7732–7738. - PMC - PubMed
    1. McMinn P, Stratov I, Nagarajan L, Davis S. Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clin Infect Dis. 2001;32:236–242. - PubMed

Publication types

MeSH terms