Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2010 Jan;35(1):105-13.
doi: 10.1016/j.psyneuen.2009.09.007.

Testosterone reduces amygdala-orbitofrontal cortex coupling

Affiliations
Randomized Controlled Trial

Testosterone reduces amygdala-orbitofrontal cortex coupling

Guido van Wingen et al. Psychoneuroendocrinology. 2010 Jan.

Abstract

Testosterone influences various aspects of affective behavior, which is mediated by different brain regions within the emotion circuitry. Previous neuroimaging studies have demonstrated that testosterone increases neural activity in the amygdala. To investigate whether this could be due to altered regulation of amygdala functioning which is thought to be mediated by the prefrontal cortex, we studied the effects of exogenous testosterone on the interaction between the amygdala and other brain regions. Healthy middle-aged women received a single nasal testosterone dose in a randomized, placebo-controlled, crossover manner, and performed an emotional face matching task while their brain activity was measured with functional MRI. The results show that testosterone rapidly reduced functional coupling of the amygdala with the orbitofrontal cortex, and enhanced amygdala coupling with the thalamus. This suggests that testosterone may reduce the regulatory control over the amygdala, or that testosterone shifts amygdala output away from the orbitofrontal cortex towards the thalamus. Testosterone also reduced functional coupling with the contralateral amygdala. Because interhemispheric amygdala coupling is lower in men than in women, this result suggests that circulating testosterone may contribute to this sexual dimorphism.

PubMed Disclaimer

Publication types

LinkOut - more resources