Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;31(1):173-9.
doi: 10.1016/j.biomaterials.2009.09.018. Epub 2009 Sep 26.

Modulating cellular adhesion through nanotopography

Affiliations

Modulating cellular adhesion through nanotopography

Paolo Decuzzi et al. Biomaterials. 2010 Jan.

Abstract

Cellular adhesion is a fundamental process in the development of scaffolds for tissue engineering; in the design of biosensors and in preparing antibacterial substrates. A theoretical model is presented for predicting the strength of cellular adhesion to originally inert surfaces as a function of the substrate topography, accounting for both specific (ligand-receptor) and non-specific interfacial interactions. Three regimes have been identified depending on the surface energy (gamma) of the substrate: for small gamma, any increase in roughness is detrimental to adhesion; for large gamma, an optimal roughness exists that maximizes adhesion; and for intermediate gamma, surface roughness has a minor effect on adhesion. The results presented are in qualitative agreement with several experimental observations and can capture the long-term equilibrium configuration of the system. The model proposed supports the notion for rationally designing substrates where topography and physico-chemical properties are tailored to favour cellular proliferation whilst repelling bacterial adhesion.

PubMed Disclaimer

Publication types

LinkOut - more resources