Paths reunited: Initiation of the classical and lectin pathways of complement activation
- PMID: 19783065
- PMCID: PMC2824237
- DOI: 10.1016/j.imbio.2009.08.006
Paths reunited: Initiation of the classical and lectin pathways of complement activation
Abstract
Understanding the structural organisation and mode of action of the initiating complex of the classical pathway of complement activation (C1) has been a central goal in complement biology since its isolation almost 50 years ago. Nevertheless, knowledge is still incomplete, especially with regard to the interactions between its subcomponents C1q, C1r and C1s that trigger activation upon binding to a microbial target. Recent studies have provided new insights into these interactions, and have revealed unexpected parallels with initiating complexes of the lectin pathway of complement: MBL-MASP and ficolin-MASP. Here, we develop and expand these concepts and delineate their implications towards the key aspects of complement activation via the classical and lectin pathways.
Figures
References
-
- Beinrohr L, Harmat V, Dobo J, Lorincz Z, Gal P, Zavodszky P. C1 inhibitor serpin domain structure reveals the likely mechanism of heparin potentiation and conformational disease. J Biol Chem. 2007;282(29):21100–21109. - PubMed
-
- Botto M. C1q knock-out mice for the study of complement deficiency in autoimmune disease. Exp Clin Immunogenet. 1998;15(4):231–234. - PubMed
-
- Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet. 1998;19(1):56–59. - PubMed
-
- Budayova-Spano M, Lacroix M, Thielens NM, Arlaud GJ, Fontecilla-Camps JC, Gaboriaud C. The crystal structure of the zymogen catalytic domain of complement protease C1r reveals that a disruptive mechanical stress is required to trigger activation of the C1 complex. EMBO J. 2002;21(3):231–239. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
