Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Sep;261(3):595-606.
doi: 10.1007/BF00313540.

Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia

Affiliations
Comparative Study

Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia

W Kummer et al. Cell Tissue Res. 1990 Sep.

Abstract

Cranial and spinal sensory ganglia of the guinea-pig were investigated by means of histochemistry and biochemistry for the presence of catecholamines and catecholamine-synthesizing enzymes. Sensory neurons exhibiting immunoreactivity to the rate-limiting enzyme of catecholamine synthesis, tyrosine hydroxylase (TH), were detected by immunohistochemistry in lumbo-sacral dorsal root ganglia, the nodose ganglion and the petrosal/jugular ganglion complex. The carotid body was identified as a target of TH-like-immunoreactive (TH-LI) neurons by the use of combined retrograde tracing and immunohistochemistry. Double-labelling immunofluorescence revealed that most TH-LI neurons also contained somatostatin-LI, but TH-LI did not coexist with either calcitonin gene-related peptide- or substance P-LI. TH-LI neurons did not react with antibodies to other enzymes involved in catecholamine synthesis, i.e., aromatic amino acid decarboxylase (AADC), dopamine-beta-hydroxylase (D beta H), and phenylethanolamine-N-methyl-transferase (PNMT). Petrosal neurons as well as their endings in the carotid body lacked dopamine- and L-DOPA-LI. Sensory neurons did not display glyoxylic acid-induced catecholamine fluorescence. Ganglia containing TH-LI neurons were kept in short-term organ culture after crushing their roots and the exiting nerve in order to enrich intra-axonal transmitter content at the ganglionic side of the crush. However, even under these conditions, catecholamine fluorescence was not detected in axons projecting peripherally or centrally from the ganglia. Sympathetic noradrenergic nerves entered the ganglia and terminated within them. Accordingly, biochemical analyses of guinea-pig sensory ganglia revealed noradrenaline but no dopamine. In conclusion, catecholamines within guinea-pig sensory ganglia are confined to sympathetic nerves, which fulfill presently unknown functions. The TH-LI neurons themselves, however, lack any additional sign of catecholamine synthesis, and the presence of enzymatically active TH within these neurons is questionable.

PubMed Disclaimer

References

    1. Brain Res. 1989 Jan 23;478(1):156-60 - PubMed
    1. Brain Res. 1984 Feb 20;293(2):225-30 - PubMed
    1. J Comp Neurol. 1987 Aug 22;262(4):578-93 - PubMed
    1. Brain Res. 1986 Jun 25;376(2):299-309 - PubMed
    1. Neurosci Lett. 1989 Jul 31;102(2-3):191-6 - PubMed

Publication types

LinkOut - more resources