Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug;80(2 Pt 2):026208.
doi: 10.1103/PhysRevE.80.026208. Epub 2009 Aug 20.

Selection of flow-distributed oscillation and Turing patterns by boundary forcing in a linearly growing, oscillating medium

Affiliations

Selection of flow-distributed oscillation and Turing patterns by boundary forcing in a linearly growing, oscillating medium

David G Míguez et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug.

Abstract

We studied the response of a linearly growing domain of the oscillatory chemical chlorine dioxide-iodide-malonic acid (CDIMA) medium to periodic forcing at its growth boundary. The medium is Hopf-, as well as Turing-unstable and the system is convectively unstable. The results confirm numerical predictions that two distinct modes of pattern can be excited by controlling the driving frequency at the boundary, a flow-distributed-oscillation (FDO) mode of traveling waves at low values of the forcing frequency f , and a mode of stationary Turing patterns at high values of f . The wavelengths and phase velocities of the experimental patterns were compared quantitatively with results from dynamical simulations and with predictions from linear dispersion relations. The results for the FDO waves agreed well with these predictions, and obeyed the kinematic relations expected for phase waves with frequencies selected by the boundary driving frequency. Turing patterns were also generated within the predicted range of forcing frequencies, but these developed into two-dimensional structures which are not fully accounted for by the one-dimensional numerical and analytical models. The Turing patterns excited by boundary forcing persist when the forcing is removed, demonstrating the bistability of the unforced, constant size medium. Dynamical simulations at perturbation frequencies other than those of the experiments showed that in certain ranges of forcing frequency, FDO waves become unstable, breaking up into harmonic waves of different frequency and wavelength and phase velocity.

PubMed Disclaimer

Similar articles

Publication types