Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;21(2):120-5.
doi: 10.1111/j.1540-8167.2009.01600.x. Epub 2009 Sep 28.

Pressure-guided cryoballoon isolation of the pulmonary veins for the treatment of paroxysmal atrial fibrillation

Affiliations

Pressure-guided cryoballoon isolation of the pulmonary veins for the treatment of paroxysmal atrial fibrillation

Claudia Herrera Siklódy et al. J Cardiovasc Electrophysiol. 2010 Feb.

Abstract

Background: Pulmonary vein (PV) isolation using a balloon-mounted cryoablation system is a new technology for the percutaneous treatment of atrial fibrillation (AF). Complete PV occlusion during balloon ablation has been shown to predict successful electrical isolation. The aim of this study was to correlate mechanical PV occlusion with changes in a pressure curve recorded at the distal tip of the cryoballoon catheter.

Methods and results: We analyzed 51 PVs in 12 patients (61 +/- 6 years old) with paroxysmal AF. At first, PV occlusion via the cryoballoon was documented by changes in the pressure curve. Once the PV is occluded, the pressure curve registered in the vein converts from a left atrial pressure curve to a pulmonary artery pressure curve: the PV wedge curve. Occlusion was then confirmed by transesophageal echocardiography (TEE). Following 2 cryoablation applications, electrical PV isolation was assessed with a circumferential mapping catheter. Under the exclusive guidance of changes in the pressure curve at the tip of the cryoballoon, mechanical occlusion confirmed by TEE was achieved in 47 of 51 PVs (92%). Three PVs required further TEE guidance to achieve occlusion. All 50 occluded veins were electrically isolated after cryoablation. One right inferior vein, which could not be occluded with the balloon, displayed conduction post cryoablation and was isolated by focal ablation.

Conclusions: Occlusion and electrical isolation of PVs during cryoballoon ablation can be predicted by the appearance of a PV wedge curve at the tip of the catheter. This new straightforward parameter may facilitate the procedure.

PubMed Disclaimer

Similar articles

Cited by