Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;73(3):217-23.

Kinetic analysis of 5 sugar probes in dog serum after orogastric administration

Affiliations

Kinetic analysis of 5 sugar probes in dog serum after orogastric administration

Heriberto Rodríguez et al. Can J Vet Res. 2009 Jul.

Abstract

The objective of this study was to describe the kinetics of orally administered sugar probes in serum for the assessment of gastrointestinal permeability and intestinal absorptive capacity in dogs. Eight healthy dogs received lactulose (L), rhamnose (R), methylglucose (M), xylose (X), and sucrose (S) by orogastric intubation. Baseline blood samples and subsequently timed blood samples were taken during 24 hours. Sugars were analyzed by gas chromatography-mass spectrometry (GC-MS). Statistical analysis was performed using a Friedman test with Dunn's multiple comparison post test and a Kruskal-Wallis test. Statistical significance was set at a P-value < 0.05. Sugars in serum were detected after orogastric administration. Concentrations of L and R were significantly different from the baseline from 90 to 240 and 60 to 300 min, respectively, and those of X, M, and S were different from 30 to 240 min post-dosing (P < 0.05 for all 5 probes). Maximum concentrations of L and R were obtained at 180 min, while X, M, and S reached their maximum concentrations at 90 min post-dosing. For all sugars, no statistically significant differences were found between concentrations at 90, 120, and 180 min or between the coefficients of variation (CV%) of those mean concentrations for these 3 time points. Based on these data, the collection of 2 blood samples, one taken at baseline and the other obtained between 90 and 180 minutes after dosing, might be sufficient for the determination of gastrointestinal permeability and mucosal absorptive capacity using these 5 sugar probes in canine serum.

L’objectif de la présente étude était de décrire la cinétique sérique de sucres sondes administrés oralement pour l’évaluation de la perméabilité gasto-intestinale et de la capacité d’absorption chez le chien. Huit chiens en santé ont reçu du lactulose (L), du rhamnose (R), du méthyl-glucose (M), du xylose (X) et du sucrose (S) par intubation orogastrique. Des échantillons sanguins pour les valeurs de base et des échantillons subséquents chronométrés ont été prélevés sur une période de 24 heures. Les sucres ont été analysés par chromatographie gazeuse-spectre de masse (GC-MS). Une analyse statistique a été effectuée en utilisant le test de Friedman avec une comparaison post-test multiple de Dunn et un test de Kruskal-Wallis. Le seuil de signification a été fixé à une valeur de P < 0,05. Les sucres dans le sérum ont été détectés après administration orogastrique. Les concentrations de L et R étaient significativement différentes des valeurs de base, respectivement, entre 90 et 240 et 60 et 300 min, et celles de X, M et S étaient différentes entre 30 et 240 min post-administration (P < 0,05 pour les 5 sondes). Les concentrations maximales de L et R ont été obtenues à 180 min, alors que celles de X, M et S ont atteint leur maximum 90 min post-administration. Pour tous les sucres, aucune différence significative n’a été trouvée entre les concentrations à 90, 120 et 180 min ou entre les coefficients de variation (%CV) des concentrations moyennes pour ces 3 coordonnées temporelles. Sur la base de ces données, le dosage de ces 5 sucres sondes dans 2 prélèvement sanguins, le premier au temps 0 et le second 90 à 180 min après l’administration du sucre, pourrait être suffisant pour déterminer la perméabilité et la capacité d’absorption de la muqueuse gastro-intestinale.

(Traduit par Docteur Serge Messier)

PubMed Disclaimer

Figures

Figure 1
Figure 1
Representative total ion chromatogram. This figure shows a representative ion chromatogram for the 5 target sugar probes spiked in pooled canine serum samples at a concentration of 125 mg/L. Labeled peaks indicate major peaks of xylose (X), rhamnose (R), methylglucose (M), sucrose (S), lactulose (L), and the internal standard mannitol (m).
Figure 2
Figure 2
Concentration-time profile of lactulose [mean ± standard deviation (s)]. This figure shows the changes of lactulose concentrations in serum after orogastric administration in healthy dogs (n = 8). Serum concentrations of lactulose were significantly different from baseline at 90, 120, 180, 240 min post-dosing (P < 0.05), reaching the maximum peak concentration at 180 min post-dosing (mean ± s: 8.2 ± 4.9 mg/L).
Figure 3
Figure 3
Concentration-time profile of rhamnose [mean ± standard deviation (s)]. This figure shows the changes of rhamnose concentrations in serum after orogastric administration in healthy dogs (n = 8). Serum concentrations of rhamnose were significantly different from baseline at 60, 90, 120, 180, 240, and 300 min post-dosing (P < 0.05), reaching the maximum peak concentration at 180 min post-dosing (means ± s: 35.6 ± 4.4 mg/L).
Figure 4
Figure 4
Concentration-time profile of xylose [mean ± standard deviation (s)]. This figure shows the changes of xylose concentrations in serum after orogastric administration in healthy dogs (n = 8). Serum concentrations of xylose were significantly different from baseline at 30, 60, 90, 180, and 240 min post-dosing (P < 0.05), reaching the maximum peak concentration at 90 min post-dosing (means ± s: 224.0 ± 72.6 mg/L).
Figure 5
Figure 5
Concentration-time profile of methylglucose [mean ± standard deviation (s)]. This figure shows the changes of methylglucose concentrations in serum after orogastric administration in healthy dogs (n = 8). Serum concentrations of methylglucose were significantly different from baseline at 30, 60, 90, 120, 180, and 240 min post-dosing (P < 0.05), reaching the maximum peak concentration at 90 min post-dosing (means ± s: 214.8 ± 80.7 mg/L).
Figure 6
Figure 6
Concentration-time profile of sucrose [mean ± standard deviation (s)]. This figure shows the changes of sucrose concentrations in serum after orogastric administration in healthy dogs (n = 8). Serum concentrations of sucrose were significantly different from baseline at 30, 60, 90, 120, 180, and 240 min post-dosing (P < 0.05), reaching the maximum peak concentration at 90 min post-dosing (means ± s: 4.1 ± 1.7 mg/L).
Figure 7
Figure 7
Serum concentration-time curves of the 5 sugars after orogastric administration. Serum concentrations of xylose, rhamnose, and methylglucose are displayed on the y-axis on the left. Serum concentrations of lactulose and sucrose are displayed on the y-axis on the right. For all 5 sugars, no significant differences were found between concentrations measured at 90, 120, and 180 min time points or between the coefficients of variation (CV%) of the mean concentrations of these 3 points.

Similar articles

Cited by

References

    1. Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: An overview. Gastroenterology. 1995;108:1566–1581. - PubMed
    1. Tibble JA, Bjarnason I. Non-invasive investigation of inflammatory bowel disease. World J Gastroenterol. 2001;7:460–465. - PMC - PubMed
    1. Daugherty AL, Mrsny R. Transcellular uptake mechanisms of the intestinal epithelial barrier: Part one. Pharm Sci Technol Today. 1999;4:144–151. - PubMed
    1. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16:351–380. - PubMed
    1. Unno N, Fink MP. Intestinal epithelial hyperpermeability. Mechanisms and relevance to disease. Gastro Clin N Am. 1998;27:289–307. - PubMed

MeSH terms

LinkOut - more resources