Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;17(2):312-20.
doi: 10.1007/s11356-009-0246-x. Epub 2009 Oct 1.

Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China

Affiliations

Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China

Dingjiang Chen et al. Environ Sci Pollut Res Int. 2010 Feb.

Abstract

Background, aim, and scope: Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China.

Methods: Water quality, hydrological parameters, and hydrophyte coverage were monitored along the ChangLe River monthly during 2004-2006. Nutrient export loads (including chemical fertilizer, livestock, and domestic sources) entering the river from the catchment area were computed using an export coefficient model based on estimated nutrient sources. Riverine TN and TP retention loads (RNRL and RPRL) were estimated using mass balance calculations. Temporal variations in riverine nutrient retention were analyzed statistically.

Results and discussion: Estimated annual riverine retention loads ranged from 1,538 to 2,127 t year(-1) for RNRL and from 79.4 to 90.4 t year(-1) for RPRL. Monthly retention loads varied from 6.4 to 300.8 t month(-1) for RNRL and from 1.4 to 15.3 t month(-1) for RPRL. Both RNRL and RPRL increased with river flow, water temperature, hydrophyte coverage, monthly sunshine hours, and total TN and TP inputs. Dissolved oxygen concentration and the pH level of the river water decreased with RNRL and RPRL. Riverine nutrient retention ratios (retention as a percentage of total input) were only related to hydrophyte coverage and monthly sunshine hours. Monthly variations in RNRL and RPRL were functions of TN and TP loads.

Conclusions: Riverine nutrient retention capacity varied with environmental conditions. Annual RNRL and RPRL accounted for 30.3-48.3% and 52.5-71.2%, respectively, of total input TN and TP loads in the ChangLe River. Monthly riverine retention ratios were 3.5-88.7% for TN and 20.5-92.6% for TP. Hydrophyte growth and coverage on the river bed is the main cause for seasonal variation in riverine nutrient retention capacity. The total input TN and TP loads were the best indicators of RNRL and RPRL, respectively.

Recommendations and perspectives: High riverine nutrient retention capacity during summer due to hydrophytic growth is favorable to the avoidance of algal bloom in both river systems and coastal water in southeast China. Policies should be developed to strictly control nutrient applications on agricultural lands. Strategies for promoting hydrophyte growth in rivers are desirable for water quality management.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Sci Total Environ. 2006 Jul 15;365(1-3):238-59 - PubMed
    1. Sci Total Environ. 2001 Mar 26;269(1-3):117-30 - PubMed
    1. Water Res. 2001 Apr;35(6):1489-99 - PubMed
    1. Environ Sci Pollut Res Int. 2003;10(2):126-39 - PubMed
    1. Water Res. 2006 Feb;40(3):569-78 - PubMed

Publication types

LinkOut - more resources