Ind represses msh expression in the intermediate column of the Drosophila neuroectoderm, through direct interaction with upstream regulatory DNA
- PMID: 19795518
- PMCID: PMC2995376
- DOI: 10.1002/dvdy.22096
Ind represses msh expression in the intermediate column of the Drosophila neuroectoderm, through direct interaction with upstream regulatory DNA
Abstract
The Drosophila neurectoderm is initially subdivided across the dorsoventral (DV) axis into three domains that are defined by the expression of three homeodomain containing proteins. These are from ventral to dorsal: Ventral nervous system defective (vnd), Intermediate neuroblasts defective (ind) and Muscle segment homeobox (msh). This is remarkably similar to the distribution of the orthologous homeodomain proteins in the developing neural tube of mice and Zebrafish. This pattern is partially governed by a 'ventral dominance' mechanism, in which Vnd represses ind and Ind represses msh. A major unanswered question in this process is: How does Ind direct positioning of the ventral border of msh expression. Toward this goal, we have identified regulatory DNA essential for expression of msh in the early neurectoderm. In addition, we demonstrated that Ind acts directly in this element by a combination of genetic and molecular experiments. Specifically, expression is expanded ventrally in ind mutant embryos and Ind protein directly and specifically bound to the msh regulatory DNA, and this interaction was required to limit the ventral boundary of msh expression.
Copyright 2009 Wiley-Liss, Inc.
Figures
References
-
- Buescher M, Hing FS, Chia W. Formation of Neuroblasts in the embryonic central nervuos system of Drosophila melanogaster is controlled by SoxNeuro. Development. 2002;129:4193–4203. - PubMed
-
- Chen CY, Schwartz RJ. Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J Biol Chem. 1995;270:15628–15633. - PubMed
-
- Cowden J, Levine M. Ventral dominance governs sequential patterns of gene expression across the dorsal-ventral axis of the neurectoderm in the Drosophila embryo. Dev Bio. 2003;262:335–349. - PubMed
-
- D'Alessio M, Frasch M. msh may play a conserved role in dorsoventral patterning of the neuroectoderm and mesoderm. Mech Dev. 1996;58:217–231. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
