Phylodynamics of infectious disease epidemics
- PMID: 19797047
- PMCID: PMC2787429
- DOI: 10.1534/genetics.109.106021
Phylodynamics of infectious disease epidemics
Abstract
We present a formalism for unifying the inference of population size from genetic sequences and mathematical models of infectious disease in populations. Virus phylogenies have been used in many recent studies to infer properties of epidemics. These approaches rely on coalescent models that may not be appropriate for infectious diseases. We account for phylogenetic patterns of viruses in susceptible-infected (SI), susceptible-infected-susceptible (SIS), and susceptible-infected-recovered (SIR) models of infectious disease, and our approach may be a viable alternative to demographic models used to reconstruct epidemic dynamics. The method allows epidemiological parameters, such as the reproductive number, to be estimated directly from viral sequence data. We also describe patterns of phylogenetic clustering that are often construed as arising from a short chain of transmissions. Our model reproduces the moments of the distribution of phylogenetic cluster sizes and may therefore serve as a null hypothesis for cluster sizes under simple epidemiological models. We examine a small cross-sectional sample of human immunodeficiency (HIV)-1 sequences collected in the United States and compare our results to standard estimates of effective population size. Estimated prevalence is consistent with estimates of effective population size and the known history of the HIV epidemic. While our model accurately estimates prevalence during exponential growth, we find that periods of decline are harder to identify.
Figures






Similar articles
-
Using an epidemiological model for phylogenetic inference reveals density dependence in HIV transmission.Mol Biol Evol. 2014 Jan;31(1):6-17. doi: 10.1093/molbev/mst172. Epub 2013 Oct 1. Mol Biol Evol. 2014. PMID: 24085839 Free PMC article.
-
Inferring epidemiological dynamics with Bayesian coalescent inference: the merits of deterministic and stochastic models.Genetics. 2015 Feb;199(2):595-607. doi: 10.1534/genetics.114.172791. Epub 2014 Dec 19. Genetics. 2015. PMID: 25527289 Free PMC article.
-
Viral phylodynamics and the search for an 'effective number of infections'.Philos Trans R Soc Lond B Biol Sci. 2010 Jun 27;365(1548):1879-90. doi: 10.1098/rstb.2010.0060. Philos Trans R Soc Lond B Biol Sci. 2010. PMID: 20478883 Free PMC article.
-
Emerging Concepts of Data Integration in Pathogen Phylodynamics.Syst Biol. 2017 Jan 1;66(1):e47-e65. doi: 10.1093/sysbio/syw054. Syst Biol. 2017. PMID: 28173504 Free PMC article. Review.
-
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.Cochrane Database Syst Rev. 2022 Feb 1;2(2022):CD014217. doi: 10.1002/14651858.CD014217. Cochrane Database Syst Rev. 2022. PMID: 36321557 Free PMC article.
Cited by
-
Inference for nonlinear epidemiological models using genealogies and time series.PLoS Comput Biol. 2011 Aug;7(8):e1002136. doi: 10.1371/journal.pcbi.1002136. Epub 2011 Aug 25. PLoS Comput Biol. 2011. PMID: 21901082 Free PMC article.
-
Unifying Phylogenetic Birth-Death Models in Epidemiology and Macroevolution.Syst Biol. 2021 Dec 16;71(1):172-189. doi: 10.1093/sysbio/syab049. Syst Biol. 2021. PMID: 34165577 Free PMC article.
-
Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study.PLoS Comput Biol. 2017 Mar 6;13(3):e1005416. doi: 10.1371/journal.pcbi.1005416. eCollection 2017 Mar. PLoS Comput Biol. 2017. PMID: 28263987 Free PMC article.
-
Integrating phylodynamics and epidemiology to estimate transmission diversity in viral epidemics.PLoS Comput Biol. 2013;9(1):e1002876. doi: 10.1371/journal.pcbi.1002876. Epub 2013 Jan 31. PLoS Comput Biol. 2013. PMID: 23382662 Free PMC article.
-
A computationally tractable birth-death model that combines phylogenetic and epidemiological data.PLoS Comput Biol. 2022 Feb 11;18(2):e1009805. doi: 10.1371/journal.pcbi.1009805. eCollection 2022 Feb. PLoS Comput Biol. 2022. PMID: 35148311 Free PMC article.
References
-
- Anderson, R. M., and R. M. May, 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, London/New York/Oxford.
-
- Athreya, K. B., and P. E. Ney, 2004. Branching Processes. Dover, New York.
-
- Bailey, N. T. J., 1975. The Mathematical Theory of Infectious Diseases and Its Applications. Hafner Press, New York.
-
- Brenner, B. G., M. Roger, J. Routy, D. Moisi, M. Ntemgwa et al., 2007. High rates of forward transmission events after acute/early HIV-1 infection. J. Infect. Dis. 195 951. - PubMed
-
- Brown, A. J., H. F. Günthard, J. K. Wong, R. T. D'Aquila, V. A. Johnson et al., 1999. Sequence clusters in human immunodeficiency virus type 1 reverse transcriptase are associated with subsequent virological response to antiretroviral therapy. J. Infect. Dis. 180 1043–1049. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical