Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;2(1):37-49.
doi: 10.1093/jmcb/mjp028. Epub 2009 Sep 30.

Paracrine unpaired signaling through the JAK/STAT pathway controls self-renewal and lineage differentiation of drosophila intestinal stem cells

Affiliations

Paracrine unpaired signaling through the JAK/STAT pathway controls self-renewal and lineage differentiation of drosophila intestinal stem cells

Guonan Lin et al. J Mol Cell Biol. 2010 Feb.

Abstract

Drosophila and mammalian intestinal stem cells (ISCs) share similarities in their regulatory mechanisms, with both requiring Wingless (Wg)/Wnt signaling for their self-renewal, although additional regulatory mechanisms are largely unknown. Here we report the identification of Unpaired as another paracrine signal from the muscular niche, which activates a canonical JAK/STAT signaling cascade in Drosophila ISCs to regulate ISC self-renewal and differentiation. We show that compromised JAK signaling causes ISC quiescence and loss, whereas signaling overactivation produces extra ISC-like and progenitor cells. Simultaneous disruption or activation of both JAK and Wg signaling in ISCs results in a stronger ISC loss or a greater expansion of ISC-like cells, respectively, than by altering either pathway alone, indicating that the two pathways function in parallel. Furthermore, we show that loss of JAK signaling causes blockage of enteroblast differentiation and reduced JAK signaling preferentially affects enteroendocrine (ee) cell differentiation. Conversely, JAK overactivation produces extra differentiated cells, especially ee cells. Together with the functional analysis with Notch (N), we suggest two separate roles of JAK/STAT signaling in Drosophila ISC lineages: it functions upstream of N, in parallel and cooperatively with Wg signaling to control ISC self-renewal; it also antagonizes with N activity to control the binary fate choice of intestinal progenitor cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources