Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010;69(1):28-33.
doi: 10.1159/000243151. Epub 2009 Oct 2.

Correcting for cryptic relatedness in population-based association studies of continuous traits

Affiliations

Correcting for cryptic relatedness in population-based association studies of continuous traits

Feng Zhang et al. Hum Hered. 2010.

Abstract

Cryptic relatedness was suggested to be an important source of confounding in population-based association studies (PBAS). The magnitude and manner of cryptic relatedness affecting the performance of PBAS of continuous traits remain to be investigated. We simulated a set of related samples through biased sampling and inbreeding, and evaluated the power and type I error rates of simple association tests (SAT) without correcting for cryptic relatedness. We also used extended likelihood ratio tests (ELRT) to conduct PBAS accounting for cryptic relatedness, and compared it with genomic control (GC). Cryptic relatedness decreased the power as well as increased the type I error rates of SAT in both biased sampling and inbreeding models. The impact of cryptic relatedness on the performance of SAT appeared to be limited in the biased sampling model. However, cryptic relatedness in inbred populations may result in excessive false positive results of SAT. Compared with SAT and GC, ELRT obtained improved power and type I error rates under various scenarios. Ignoring cryptic relatedness may increase spurious association results in PBAS. Our ELRT provides a novel approach to control cryptic relatedness in PBAS of human continuous traits.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Risch N, Teng J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res. 1998;8:1273–1288. - PubMed
    1. Morton NE, Collins A. Tests and estimates of allelic association in complex inheritance. Proc Natl Acad Sci USA. 1998;95:11389–11393. - PMC - PubMed
    1. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–1517. - PubMed
    1. Liu YJ, Liu XG, Wang L, Dina C, Yan H, Liu JF, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Meyre D, Delplanque J, Pei YF, Zhang L, Recker RR, Froguel P, Deng HW. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum Mol Genet. 2008;17:1803–1813. - PMC - PubMed
    1. Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HA, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371:1505–1512. - PMC - PubMed

Publication types