Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2009 Oct;36(5):461-77.
doi: 10.1007/s10928-009-9131-y. Epub 2009 Oct 2.

Modelling overdispersion and Markovian features in count data

Affiliations
Randomized Controlled Trial

Modelling overdispersion and Markovian features in count data

Iñaki F Trocóniz et al. J Pharmacokinet Pharmacodyn. 2009 Oct.

Abstract

The number of counts (events) per unit of time is a discrete response variable that is generally analyzed with the Poisson distribution (PS) model. The PS model makes two assumptions: the mean number of counts (lambda) is assumed equal to the variance, and counts occurring in non-overlapping intervals are assumed independent. However, many counting outcomes show greater variability than predicted by the PS model, a phenomenon called overdispersion. The purpose of this study was to implement and explore, in the population context, different distribution models accounting for overdispersion and Markov patterns in the analysis of count data. Daily seizures count data obtained from 551 subjects during the 12-week screening phase of a double-blind, placebo-controlled, parallel-group multicenter study performed in epileptic patients with medically refractory partial seizures, were used in the current investigation. The following distribution models were fitted to the data: PS, Zero-Inflated PS (ZIP), Negative Binomial (NB), and Zero-Inflated Negative Binomial (ZINB) models. Markovian features were introduced estimating different lambdas and overdispersion parameters depending on whether the previous day was a seizure or a non-seizure day. All analyses were performed with NONMEM VI. All models were successfully implemented and all overdispersed models improved the fit with respect to the PS model. The NB model resulted in the best description of the data. The inclusion of Markovian features in lambda and in the overdispersion parameter improved the fit significantly (P < 0.001). The plot of the variance versus mean daily seizure count profiles, and the number of transitions, are suggested as model performance tools reflecting the capability to handle overdispersion and Markovian features, respectively.

PubMed Disclaimer

References

    1. Clin Pharmacol Ther. 2000 Aug;68(2):175-88 - PubMed
    1. Clin Pharmacol Ther. 2008 Jul;84(1):127-35 - PubMed
    1. Clin Pharmacol Ther. 2003 Jun;73(6):491-505 - PubMed
    1. J Pharmacokinet Pharmacodyn. 2005 Apr;32(2):261-81 - PubMed
    1. Epidemiol Perspect Innov. 2006 Mar 21;3:3 - PubMed

Publication types

LinkOut - more resources