Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 28;131(42):15120-1.
doi: 10.1021/ja9072707.

Synthesis and hydrogen storage properties of Be(12)(OH)(12)(1,3,5-benzenetribenzoate)(4)

Affiliations

Synthesis and hydrogen storage properties of Be(12)(OH)(12)(1,3,5-benzenetribenzoate)(4)

Kenji Sumida et al. J Am Chem Soc. .

Abstract

The first crystalline beryllium-based metal-organic framework has been synthesized and found to exhibit an exceptional surface area useful for hydrogen storage. Reaction of 1,3,5-benzenetribenzoic acid (H(3)BTB) and beryllium nitrate in a mixture of DMSO, DMF, and water at 130 degrees C for 10 days affords the solvated form of Be(12)(OH)(12)(1,3,5-benzenetribenzoate)(4) (1). Its highly porous framework structure consists of unprecedented saddle-shaped [Be(12)(OH)(12)](12+) rings connected through tritopic BTB(3-) ligands to generate a 3,12 net. Compound 1 exhibits a BET surface area of 4030 m(2)/g, the highest value yet reported for any main group metal-organic framework or covalent organic framework. At 77 K, the H(2) adsorption data for 1 indicate a fully reversible uptake of 1.6 wt % at 1 bar, with an initial isosteric heat of adsorption of -5.5 kJ/mol. At pressures up to 100 bar, the data show the compound to serve as an exceptional hydrogen storage material, reaching a total uptake of 9.2 wt % and 44 g/L at 77 K and of 2.3 wt % and 11 g/L at 298 K. It is expected that reaction conditions similar to those reported here may enable the synthesis of a broad new family of beryllium-based frameworks with extremely high surface areas.

PubMed Disclaimer

LinkOut - more resources