Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 15;183(8):4921-30.
doi: 10.4049/jimmunol.0901226.

Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells

Affiliations

Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells

Mattias Carlsten et al. J Immunol. .

Abstract

The activating NK cell receptor DNAX accessory molecule-1 (DNAM-1) contributes to tumor immune surveillance and plays a crucial role in NK cell-mediated recognition of several types of human tumors, including ovarian carcinoma. Here, we have analyzed the receptor repertoire and functional integrity of NK cells in peritoneal effusions from patients with ovarian carcinoma. Relative to autologous peripheral blood NK cells, tumor-associated NK cells expressed reduced levels of the DNAM-1, 2B4, and CD16 receptors and were hyporesponsive to HLA class I-deficient K562 cells and to coactivation via DNAM-1 and 2B4. Moreover, tumor-associated NK cells were also refractory to CD16 receptor stimulation, resulting in diminished Ab-dependent cellular cytotoxicity against autologous tumor cells. Coincubation of NK cells with ovarian carcinoma cells expressing the DNAM-1 ligand CD155 led to reduction of DNAM-1 expression. Therefore, NK cell-mediated rejection of ovarian carcinoma may be limited by perturbed DNAM-1 expression on tumor-associated NK cells induced by chronic ligand exposure. Thus, these data support the notion that tumor-induced alterations of activating NK cell receptor expression may hamper immune surveillance and promote tumor progression.

PubMed Disclaimer

Publication types

MeSH terms