Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Oct 23;29(42):9956-62.
doi: 10.1021/bi00494a028.

Escherichia coli maltodextrin phosphorylase: contribution of active site residues glutamate-637 and tyrosine-538 to the phosphorolytic cleavage of alpha-glucans

Affiliations
Comparative Study

Escherichia coli maltodextrin phosphorylase: contribution of active site residues glutamate-637 and tyrosine-538 to the phosphorolytic cleavage of alpha-glucans

R Schinzel et al. Biochemistry. .

Abstract

The role of Escherichia coli maltodextrin phosphorylase (EC 2.4.1.1) active site residues Glu637 and Tyr538 which line the sugar-phosphate contact region of the enzyme was investigated by site-directed mutagenesis. Substitution of Glu637 by an Asp or Gln residue reduced kcat to approximately 0.2% of wild-type activity, while the Km values were affected to a minor extent. This indicated participation of Glu637 in transition-state binding rather than in ground-state binding. 31P NMR analysis of the ionization state of enzyme-bound pyridoxal phosphate suggested that Glu637 is also involved in modulation of the protonation state of the coenzyme phosphate observed during catalysis. Despite loss of proposed hydrogen-bonded substrate contacts, the Tyr538Phe mutant enzyme retained more than 10% activity; the apparent affinity of all substrates was slightly decreased. Mutations at either site affected the error rate of the enzyme (ratio of hydrolysis/phosphorolysis). Besides a role in substrate binding, the hydrogen-bond network of Tyr538 supports the exclusion of water from the active site.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources