Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Jul;42(7):1323-30.

[Interrelationship between the generation of oxygen anion-radicals and the reduction of artificial acceptors and cytochrome P-450 by NADPH-cytochrome c reductase]

[Article in Russian]
  • PMID: 198028

[Interrelationship between the generation of oxygen anion-radicals and the reduction of artificial acceptors and cytochrome P-450 by NADPH-cytochrome c reductase]

[Article in Russian]
V V Liakhovich et al. Biokhimiia. 1977 Jul.

Abstract

The interaction of NADPH-cytochrome c reductase with oxygen, artificial acceptors and cytochrome P-450 is investigated. It is found that generation of oxygen anion-radicals (O2-), determined from the reaction of adrenaline oxidation into adrenochrome, proceeds independently on the reactions of interaction with artificial "anaerobic" acceptors-cytochrome c, dichlorophenolindophenol. Propylgallate competitively inhibits the reaction of adrenaline oxidation by isolated DADPH-cytochrome c reductase and non-competitively suppress the reaction of cytochrome c reduction. In contrast to the process of electron transfer on cytochrome c, there is a direct correlation between the rate of cytochrome P-450 reduction and the rate of adrenaline oxidation in liver microsomes. Hexobarbital increases V of the adrenaline oxidation reaction and does not affect the Km value, while metirapon, a metabolic inhibitor, decreases the Vmax and does not change Km. On the basis of the data obtained it is suggested that the reactions of NADPH-cytochrome c reductase interaction with oxygen and artificial "anaerobic" acceptors are connected with different redox-states of flavoprotein or with different flavine coenzymes, and that the electron transport on cytochrome P-450 and directly on oxygen takes place in interrelated redox-states of flavoprotein.

PubMed Disclaimer

Similar articles

Publication types