Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990;77(11):1125-9.

Structural and functional characterization of the mouse multidrug resistance gene family

Affiliations
  • PMID: 1980424

Structural and functional characterization of the mouse multidrug resistance gene family

R Dhir et al. Bull Cancer. 1990.

Abstract

The mouse multidrug resistance (mdr) gene family is composed of three closely related genes mdr1, mdr2 and mdr3. To clarify the role of these three genes in the emergence of multidrug resistance and to initiate a structure-function analysis of the corresponding proteins, we have isolated full length cDNA clones corresponding to their respective cellular RNA transcripts. Sequence analyses indicate that the three encoded polypeptides are highly similar sharing the same predicted structural features and a high degree of sequence homology (85% to 92%). The three genes are contiguous on a 625 kb chromosomal segment and appear to result from two consecutive gene duplication events. Hybridization studies with gene specific probes in independently derived multidrug resistant cell lines and transfection experiments with full length cDNA clones indicate that mdr1 and mdr3 but not mdr2 overexpression can induce multidrug resistance. In transfected cells, multidrug resistance is linked to a decreased drug accumulation and an concomitant increased ATP-dependent drug efflux. Mutational analysis indicates that both predicted ATP binding domains in mdr1 are absolutely essential for biological activity. The study of chimeric proteins constructed between biologically active mdr1 and inactive mdr2 indicate that both ATP binding domains of mdr2 are functional and suggest that transmembrane domains of mdr1 are essential for the drug resistance phenotype conferred by this protein. Finally, although mdr1 and mdr3 can confer multidrug resistance, drug survival characteristics of mdr1 and mdr3 transfectants indicate that both proteins have overlapping but distinct substrate specificities.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources