Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes
- PMID: 19805228
- PMCID: PMC2736142
- DOI: 10.1073/pnas.0908834106
Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes
Abstract
Celiac disease (CD) is an autoimmune inflammatory disease with a relatively high prevalence especially in the western hemisphere. A strong genetic component is involved in the pathogenesis of CD with virtually all individuals that develop the disease carrying HLA-DQ alleles that encode specific HLA-DQ2 or HLA-DQ8 heterodimers. Consumption of cereals rich in gluten triggers a chronic intestinal inflammation in genetically susceptible individuals leading to the development of CD. Emerging evidence has implicated a central role for IL-15 in the orchestration and perpetuation of inflammation and tissue destruction in CD. Therefore, IL-15 represents an attractive target for development of new therapies for CD. Transgenic mice that express human IL-15 specifically in enterocytes (T3(b)-hIL-15 Tg mice) develop villous atrophy and severe duodeno-jejunal inflammation with massive accumulation of NK-like CD8(+) lymphocytes in the affected mucosa. We used these mice to demonstrate that blockade of IL-15 signaling with an antibody (TM-beta1) that binds to murine IL-2/IL-15Rbeta (CD122) leads to a reversal of the autoimmune intestinal damage. The present study, along with work of others, provides the rationale to explore IL-15 blockade as a test of the hypothesis that uncontrolled expression of IL-15 is critical in the pathogenesis and maintenance of refractory CD.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Jabri B, Sollid LM. Mechanisms of disease: Immunopathogenesis of celiac disease. Nat Clin Pract Gastroenterol Hepatol. 2006;3:516–525. - PubMed
-
- Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity ('celiac sprue') Gastroenterology. 1992;102:330–354. - PubMed
-
- Hüe S, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. 2004;21:367–377. - PubMed
-
- Meresse B, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004;21:357–366. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
