Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2
- PMID: 19805376
- PMCID: PMC2744629
- DOI: 10.1073/pnas.0906773106
Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2
Abstract
Increased intestinal permeability (IP) has emerged recently as a common underlying mechanism in the pathogenesis of allergic, inflammatory, and autoimmune diseases. The characterization of zonulin, the only physiological mediator known to regulate IP reversibly, has remained elusive. Through proteomic analysis of human sera, we have now identified human zonulin as the precursor for haptoglobin-2 (pre-HP2). Although mature HP is known to scavenge free hemoglobin (Hb) to inhibit its oxidative activity, no function has ever been ascribed to its uncleaved precursor form. We found that the single-chain zonulin contains an EGF-like motif that leads to transactivation of EGF receptor (EGFR) via proteinase-activated receptor 2 (PAR(2)) activation. Activation of these 2 receptors was coupled to increased IP. The siRNA-induced silencing of PAR(2) or the use of PAR(2)(-/-) mice prevented loss of barrier integrity. Proteolytic cleavage of zonulin into its alpha(2)- and beta-subunits neutralized its ability to both activate EGFR and increase IP. Quantitative gene expression revealed that zonulin is overexpressed in the intestinal mucosa of subjects with celiac disease. To our knowledge, this is the initial example of a molecule that exerts a biological activity in its precursor form that is distinct from the function of its mature form. Our results therefore characterize zonulin as a previously undescribed ligand that engages a key signalosome involved in the pathogenesis of human immune-mediated diseases that can be targeted for therapeutic interventions.
Conflict of interest statement
Conflict of interest statement: A.F. and S.N.V. have financial interest in Alba Therapeutics, a company involved in the development of treatments of CD alternative to the GFD.
Figures




References
-
- Rook GA, Stanford JL. Give us this day our daily germs. Immunol Today. 1998;19:113–116. - PubMed
-
- Fasano A, Shea-Donohue T. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2:416–422. - PubMed
-
- Wapenaar MC, et al. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut. 2008;57:463–467. - PubMed
-
- Rescigno M, Lopatin U, Chieppa M. Interactions among dendritic cells, macrophages, and epithelial cells in the gut: Implications for immune tolerance. Curr Opin Immunol. 2008;20:669–675. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous