Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 15;8(20):3340-8.
doi: 10.4161/cc.8.20.9836. Epub 2009 Oct 17.

DNA damage induced Pol eta recruitment takes place independently of the cell cycle phase

Affiliations

DNA damage induced Pol eta recruitment takes place independently of the cell cycle phase

Gaston Soria et al. Cell Cycle. .

Abstract

When DNA is damaged in cells progressing through S phase, replication blockage can be avoided by TLS (Translesion DNA synthesis). This is an auxiliary replication mechanism that relies on the function of specialized polymerases that accomplish DNA damage bypass. Intriguingly, recent evidence has linked TLS polymerases to processes that can also take place outside S phase such as nucleotide excision repair (NER). Here we show that Pol eta is recruited to UV-induced DNA lesions in cells outside S phase including cells permanently arrested in G(1). This observation was confirmed by different strategies including global UV irradiation, local UV irradiation and local multi-photon laser irradiation of single nuclei in living cells. The potential connection between Pol eta recruitment to DNA lesions outside S phase and NER was further evaluated. Interestingly, the recruitment of Pol eta to damage sites outside S phase did not depend on active NER, as UV-induced focus formation occurred normally in XPA, XPG and XPF deficient fibroblasts. Our data reveals that the re-localization of the TLS polymerase Pol eta to photo-lesions might be temporally and mechanistically uncoupled from replicative DNA synthesis and from DNA damage processing.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources