Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 28;131(42):15102-3.
doi: 10.1021/ja9067063.

Divalent metal ion triggered activity of a synthetic antimicrobial in cardiolipin membranes

Affiliations

Divalent metal ion triggered activity of a synthetic antimicrobial in cardiolipin membranes

Abhigyan Som et al. J Am Chem Soc. .

Abstract

One member of a prototypical class of antimicrobial oligomers was used to study pore formation in cardiolipin-rich membranes. Both vesicle dye-leakage assays and small-angle X-ray scattering were used to study bilayer remodeling. The results indicate that the presence of negative intrinsic curvature lipids is essential for pore formation by this class of molecules: In Gram-positive bacteria, cardiolipin and divalent metal cations like Ca(2+) and Mg(2+) are needed. This is consistent with the role of phosphatidylethanolamine (PE) lipid in Gram-negative bacteria, where antimicrobial activity is dependent on the negative intrinsic curvature of PE rather than a specific interaction with PE.

PubMed Disclaimer

Figures

Figure 1
Figure 1
AMO 2 (2.5 µg/mL for A, B and D, 0.25 µg/mL for C) induced calcein dye leakage from (A, B) 100% CL vesicles, (C) 20/80 PG/PE vesicles, (D) 50/50 PG/CL vesicles with 0 mM, 0.02 mM, 0.2 mM, 1.0 mM, 2.0 mM, 4.0 mM, 8.0 mM, and 10.0 mM (A, D) Mg2+, and (B, C) Ca2+. Final lipid concentration was 5.0 µM for assay.
Figure 2
Figure 2
(A) Synchrotron SAXS data show that, at sufficiently high [Mg2+] (between 1–4 mM), Mg2+ ions can induce SUVs composed of CL to form an inverted hexagonal structure. (B) Synchrotron SAXS data show that AMO 2 induces SUVs composed of DOPG/CL = 32/68 into a hexagonal structure at reduced concentrations of divalent Mg2+ions.

References

    1. Liu DH, DeGrado WF. J. Am. Chem. Soc. 2001;123:7553–7559. - PubMed
    2. Arnt L, Nusslein K, Tew GN. J. Polym. Sci. Part A: Polym. Chem. 2004;42:3860–3864.
    3. Lienkamp K, Madkour AE, Musante A, Nelson CF, Nusslein K, Tew GN. J. Am. Chem. Soc. 2008;130:9836–9843. - PMC - PubMed
    4. Tew GN, Liu DH, Chen B, Doerksen RJ, Kaplan J, Carroll PJ, Klein ML, DeGrado WF. Proc. Natl. Acad. Sci. U. S. A. 2002;99:5110–5114. - PMC - PubMed
    5. Som A, Vemparala S, Ivanov I, Tew GN. Biopolymers. 2008;90:83–93. - PubMed
    6. Sambhy V, Peterson BR, Sen A. Angew. Chem. Int. Ed. 2008;47:1250–1254. - PubMed
    7. Porter EA, Wang XF, Lee HS, Weisblum B, Gellman SH. Nature. 2000;404:565–565. - PubMed
    8. Scott RW, DeGrado WF, Tew GN. Curr. Opin. Biotechnol. 2008;19:620–627. - PMC - PubMed
    1. Zasloff M. Nature. 2002;415:389–395. - PubMed
    2. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. Biochemistry. 1992;31:12416–12423. - PubMed
    3. Steiner H, Andreu D, Merrifield RB. Biochim. Biophys. Acta. 1988;939:260–266. - PubMed
    4. Yang L, Gordon VD, Mishra A, Som A, Purdy KR, Davis MA, Tew GN, Wong GCL. J. Am. Chem. Soc. 2007;129:12141–12147. - PubMed
    5. Som A, Tew GN. J. Phys. Chem. B. 2008;112:3495–3502. - PMC - PubMed
    6. Cullis PR, Hope MJ, Tilcock CPS. Chemistry and Physics of Lipids. 1986;40:127–144. - PubMed
    7. Cullis PR, Dekruijff B. Biochim. Biophys. Acta. 1978;513:31–42. - PubMed
    8. Dekruijff B, Verkleij AJ, Leunissenbijvelt J, Vanechteld CJA, Hille J, Rijnbout H. Biochim. Biophys. Acta. 1982;693:1–12. - PubMed
    9. Rand RP, Sengupta S. Biochim. Biophys. Acta. 1972;225:484–492. - PubMed
    10. Yang LH, Gordon VD, Trinkle DR, Schmidt NW, Davis MA, DeVries C, Som A, Cronan JE, Tew GN, Wong GCL. Proc. Natl. Acad. Sci. U. S. A. 2008;105:20595–20600. - PMC - PubMed
    11. Epand RF, Schmitt MA, Gellman SH, Epand RM. Biochim. Biophys. Acta. 2006;1758:1343–1350. - PubMed
    12. Epand RF, Martinou JC, Fornallaz-Mulhauser M, Hughes DW, Epand RM. J. Biol. Chem. 2002;277:32632–32639. - PubMed
    1. Tew GN, Clements D, Tang HZ, Arnt L, Scott RW. Biochim. Biophys. Acta. 2006;1758:1387–1392. - PubMed
    2. Nusslein K, Arnt L, Rennie J, Owens C, Tew GN. Microbiol. 2006;152:1913–1918. - PubMed
    1. Rietveld AG, Chupin VV, Koorengevel MC, Wienk HLJ, Dowhan W, Dekruijff B. J. Biol. Chem. 1994;269:28670–28675. - PubMed
    2. Dechavigny A, Heacock PN, Dowhan W. J. Biol. Chem. 1991;266:5323–5332. - PubMed
    1. Cullis PR, Verkleij AJ, Ververgaert PHJT. Biochim. Biophys. Acta. 1978;513:11–20. - PubMed
    2. Vasilenko I, Kruijff BD, Verkleij AJ. Biochim. Biophys. Acta. 1982;684:282–286. - PubMed
    3. Powell GL, Marsh D. Biochemistry. 1985;24:2902–2908. - PubMed

Publication types