Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep-Oct;23(5):471-4.
doi: 10.2500/ajra.2009.23.3351.

Dynamic nasal infrared thermography in patients with nasal septal perforations

Affiliations

Dynamic nasal infrared thermography in patients with nasal septal perforations

Joerg Lindemann et al. Am J Rhinol Allergy. 2009 Sep-Oct.

Abstract

Background: Nasal obstruction is a typical symptom in patients with nasal septal perforations. Rhinomanometry and acoustic rhinometry are not reliable in these cases because the perforations generate incorrect results. Infrared thermography camera (ITC) systems allow contact-free intranasal recordings of the nasal surface temperature and the semiquantification of nasal airflow. The aim of this study was to perform contact-free temperature measurements of the nasal vestibular surface by application of ITC systems in patients with septal perforations to investigate the disturbed intranasal heat exchange and nasal airflow.

Methods: The surface temperature profiles within the nasal vestibules of healthy volunteers (n=10) and patients with septal perforations (n=3) were recorded with an ITC during several breathing cycles. Thermal images were taken (60/s) displaying the surface temperature in degrees centigrade corresponding to a color scale.

Results: The temperature recordings showed a disturbed intranasal heat exchange during inspiration and expiration in patients with septal perforations in comparison with healthy subjects. A reduced and irregular inspiratory cooling of the entire surface within the nasal vestibules visualizes a reduced and disturbed airflow volume.

Conclusion: The study was able to prove the feasibility of intranasal temperature recordings of the surface with an ITC system in patients with septal perforations. Contrary to rhinomanometry and acoustic rhinometry, thermography cameras can be applied to examine airflow in patients with septal perforations. The detected reduced cooling of the surface during inspiration might be a possible explanation for the patients' feelings of nasal obstruction.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources