ECG quantification of myocardial scar in cardiomyopathy patients with or without conduction defects: correlation with cardiac magnetic resonance and arrhythmogenesis
- PMID: 19808427
- PMCID: PMC2748944
- DOI: 10.1161/CIRCEP.108.798660
ECG quantification of myocardial scar in cardiomyopathy patients with or without conduction defects: correlation with cardiac magnetic resonance and arrhythmogenesis
Abstract
Background: Myocardial scarring from infarction or nonischemic fibrosis forms an arrhythmogenic substrate. The Selvester QRS score has been extensively validated for estimating myocardial infarction scar size in the absence of ECG confounders, but has not been tested to quantify scar in patients with hypertrophy, bundle branch/fascicular blocks, or nonischemic cardiomyopathy. We assessed the hypotheses that (1) QRS scores (modified for each ECG confounder) correctly identify and quantify scar in ischemic and nonischemic patients when compared with the reference standard of cardiac magnetic resonance using late-gadolinium enhancement, and (2) QRS-estimated scar size predicts inducible sustained monomorphic ventricular tachycardia during electrophysiological testing.
Methods and results: One hundred sixty-two patients with left ventricular ejection fraction < or =35% (95 ischemic, 67 nonischemic) received 12-lead ECG and cardiac magnetic resonance using late-gadolinium enhancement before implantable cardioverter defibrillator placement for primary prevention of sudden cardiac death. QRS scores correctly diagnosed cardiovascular magnetic resonance scar presence with receiver operating characteristics area under the curve of 0.91 and correlation for scar quantification of r=0.74 (P<0.0001) for all patients. Performance within hypertrophy, conduction defect, and nonischemic subgroups ranged from area under the curve of 0.81 to 0.94 and r=0.60 to 0.80 (P<0.001 for all). Among the 137 patients undergoing electrophysiological or device testing, each 3-point QRS-score increase (9% left ventricular scarring) was associated with an odds ratio for inducing monomorphic ventricular tachycardia of 2.2 (95% CI, 1.5 to 3.2; P<0.001) for all patients, 1.7 (1.0 to 2.7, P=0.04) for ischemics, and 2.2 (1.0 to 5.0, P=0.05) for nonischemics.
Conclusions: QRS scores identify and quantify scar in ischemic and nonischemic cardiomyopathy patients despite ECG confounders. Higher QRS-estimated scar size is associated with increased arrhythmogenesis and warrants further study as a risk-stratifying tool.
Conflict of interest statement
Figures
References
-
- Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, Daubert JP, Higgins SL, Brown MW, Andrews ML. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–883. - PubMed
-
- Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G, McNulty SE, Clapp-Channing N, Davidson-Ray LD, Fraulo ES, Fishbein DP, Luceri RM, Ip JH. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225–237. - PubMed
-
- Passman R, Kadish A. Sudden death prevention with implantable devices. Circulation. 2007;116:561–571. - PubMed
-
- Dillon SM, Allessie MA, Ursell PC, Wit AL. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res. 1988;63:182–206. - PubMed
-
- Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni EA. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation. 1995;92:1902–1910. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
