Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;198(2):159-68.
doi: 10.1111/j.1748-1716.2009.02050.x. Epub 2009 Oct 7.

A role for the volume regulated anion channel in volume regulation in the murine CNS cell line, CAD

Affiliations

A role for the volume regulated anion channel in volume regulation in the murine CNS cell line, CAD

V L Harvey et al. Acta Physiol (Oxf). 2010 Feb.

Abstract

Aim: The role of the volume regulated anion channel (VRAC) in a model CNS neuronal cell line, CAD, was investigated.

Methods: Changes in cell volume following hypotonic challenges were measured using a video-imaging technique. The effect of the Cl(-) channel antagonists tamoxifen (10 microm) and 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS; 100 microm) on regulatory volume decrease (RVD) were measured. The whole-cell voltage-clamp technique was used to characterize ICl(swell), the current underlying the VRAC.

Results: Using the video-imaging technique, CAD cells were found to swell and subsequently exhibit RVD when subjected to a sustained hypotonic challenge from 300 mOsmol kg(-1) H(2)O to 210 mOsmol kg(-1) H(2)O. In the presence of tamoxifen (10 microm) or DIDS (100 microm) RVD was abolished, suggesting a role for the VRAC. A hypotonic solution (230 mOsmol kg(-1) H(2)O) evoked ICl(swell), an outwardly rectifying current displaying time-independent activation, which reversed upon return to isotonic conditions. The reversal potential (E(rev)) for ICl(swell) was -14.7 + or - 1.4 mV, similar to the theoretical E(rev) for a selective Cl(-) conductance. ICl(swell) was inhibited in the presence of DIDS (100 microm) and tamoxifen (10 microm), the DIDS inhibition being voltage dependent.

Conclusions: Osmotic swelling elicits an outwardly rectifying Cl(-) conductance in CAD cells. The ICl(swell) observed in these cells is similar to that observed in other cells, and is likely to provide a pathway for the loss of Cl(-) which leads to water loss and RVD. As ischaemia, brain trauma, hypoxia and other brain pathologies can cause cell swelling, CAD cells represent a model cell line for the study of neuronal cell volume regulation.

PubMed Disclaimer

Publication types

LinkOut - more resources