Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;70(3):356-66.
doi: 10.1111/j.1574-6941.2009.00751.x. Epub 2009 Sep 9.

Links between methanotroph community composition and CH oxidation in a pine forest soil

Affiliations
Free article

Links between methanotroph community composition and CH oxidation in a pine forest soil

Per Bengtson et al. FEMS Microbiol Ecol. 2009 Dec.
Free article

Abstract

The main gap in our knowledge about what determines the rate of CH(4) oxidation in forest soils is the biology of the microorganisms involved, the identity of which remains unclear. In this study, we used stable-isotope probing (SIP) following (13)CH(4) incorporation into phospholipid fatty acids (PLFAs) and DNA/RNA, and sequencing of methane mono-oxygenase (pmoA) genes, to identify the influence of variation in community composition on CH(4) oxidation rates. The rates of (13)C incorporation into PLFAs differed between horizons, with low (13)C incorporation in the organic soil and relatively high (13)C incorporation into the two mineral horizons. The microbial community composition of the methanotrophs incorporating the (13)C label also differed between horizons, and statistical analyses suggested that the methanotroph community composition was a major cause of variation in CH(4) oxidation rates. Both PLFA and pmoA-based data indicated that CH(4) oxidizers in this soil belong to the uncultivated 'upland soil cluster alpha'. CH(4) oxidation potential exhibited the opposite pattern to (13)C incorporation, suggesting that CH(4) oxidation potential assays may correlate poorly with in situ oxidation rates. The DNA/RNA-SIP assay was not successful, most likely due to insufficient (13)C-incorporation into DNA/RNA. The limitations of the technique are briefly discussed.

PubMed Disclaimer

Publication types