Benefits of minimum-variance beamforming in medical ultrasound imaging
- PMID: 19811990
- DOI: 10.1109/TUFFC.2009.1263
Benefits of minimum-variance beamforming in medical ultrasound imaging
Abstract
Recently, significant improvement in image resolution has been demonstrated by applying adaptive beamforming to medical ultrasound imaging. In this paper, we have used the minimum-variance beamformer to show how the low sidelobe levels and narrow beamwidth of adaptive methods can be used, not only to increase resolution, but also to enhance imaging in several ways. By using a minimum-variance beamformer instead of delay-and-sum on reception, reduced aperture, higher frame rates, or increased depth of penetration can be achieved without sacrificing image quality. We demonstrate comparable resolution on images of wire targets and a cyst phantom obtained with a 96-element, 18.5-mm transducer using delay-and-sum, and a 48-element, 9.25-mm transducer using minimum variance. To increase frame rate, fewer and wider transmit beams in combination with several parallel receive beams may be used. We show comparable resolution to delay-and-sum using minimum variance, 1/4th of the number of transmit beams and 4 parallel receive beams, potentially increasing the frame rate by 4. Finally, we show that by lowering the frequency of the transmitted beam and beamforming the received data with the minimum variance beamformer, increased depth of penetration is achieved without sacrificing lateral resolution.
Similar articles
-
Adaptive beamforming applied to medical ultrasound imaging.IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Aug;54(8):1606-13. IEEE Trans Ultrason Ferroelectr Freq Control. 2007. PMID: 17703664
-
Beamspace adaptive beamforming for ultrasound imaging.IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Oct;56(10):2187-97. doi: 10.1109/TUFFC.2009.1301. IEEE Trans Ultrason Ferroelectr Freq Control. 2009. PMID: 19942506
-
A low-complexity data-dependent beamformer.IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Feb;58(2):281-9. doi: 10.1109/TUFFC.2011.1805. IEEE Trans Ultrason Ferroelectr Freq Control. 2011. PMID: 21342813
-
Advances in ultrasonography: image formation and quality assessment.J Med Ultrason (2001). 2021 Oct;48(4):377-389. doi: 10.1007/s10396-021-01140-z. Epub 2021 Oct 20. J Med Ultrason (2001). 2021. PMID: 34669073 Free PMC article. Review.
-
Detection of Point Scatterers in Medical Ultrasound.IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Feb;69(2):617-628. doi: 10.1109/TUFFC.2021.3129619. Epub 2022 Jan 27. IEEE Trans Ultrason Ferroelectr Freq Control. 2022. PMID: 34797764 Review.
Cited by
-
Deep-Learning Image Reconstruction for Real-Time Photoacoustic System.IEEE Trans Med Imaging. 2020 Nov;39(11):3379-3390. doi: 10.1109/TMI.2020.2993835. Epub 2020 Oct 28. IEEE Trans Med Imaging. 2020. PMID: 32396076 Free PMC article.
-
Training Deep Network Ultrasound Beamformers With Unlabeled In Vivo Data.IEEE Trans Med Imaging. 2022 Jan;41(1):158-171. doi: 10.1109/TMI.2021.3107198. Epub 2021 Dec 30. IEEE Trans Med Imaging. 2022. PMID: 34428139 Free PMC article.
-
Apodized adaptive beamformer.J Med Ultrason (2001). 2017 Apr;44(2):155-165. doi: 10.1007/s10396-016-0764-3. Epub 2017 Jan 13. J Med Ultrason (2001). 2017. PMID: 28084559
-
Application of low-complexity generalized coherence factor to in vivo data.J Med Ultrason (2001). 2022 Oct;49(4):555-567. doi: 10.1007/s10396-022-01243-1. Epub 2022 Aug 30. J Med Ultrason (2001). 2022. PMID: 36042125
-
Spatiotemporal Coherence Weighting for In Vivo Cardiac Photoacoustic Image Beamformation.IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):586-598. doi: 10.1109/TUFFC.2020.3016900. Epub 2021 Feb 25. IEEE Trans Ultrason Ferroelectr Freq Control. 2021. PMID: 32795968 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources