Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Oct 9;105(8):724-36.
doi: 10.1161/CIRCRESAHA.109.200386.

Human studies of angiogenic gene therapy

Affiliations
Review

Human studies of angiogenic gene therapy

Rajesh Gupta et al. Circ Res. .

Abstract

Despite significant advances in medical, interventional, and surgical therapy for coronary and peripheral arterial disease, the burden of these illnesses remains high. To address this unmet need, the science of therapeutic angiogenesis has been evolving for almost two decades. Early preclinical studies and phase I clinical trials achieved promising results with growth factors administered as recombinant proteins or as single-agent gene therapies, and data accumulated through 10 years of clinical trials indicate that gene therapy has an acceptable safety profile. However, more rigorous phase II and phase III clinical trials have failed to unequivocally demonstrate that angiogenic agents are beneficial under the conditions and in the patients studied to date. Investigators have worked to understand the biology of the vascular system and to incorporate their findings into new treatments for patients with ischemic disease. Recent gene- and cell-therapy trials have demonstrated the bioactivity of several new agents and treatment strategies. Collectively, these observations have renewed interest in the mechanisms of angiogenesis and deepened our understanding of the complexity of vascular regeneration. Gene therapy that incorporates multiple growth factors, approaches that combine cell and gene therapy, and the administration of "master switch" agents that activate numerous downstream pathways are among the credible and plausible steps forward. In this review, we examine the clinical development of angiogenic gene therapy, summarize several of the lessons learned during the conduct of these trials, and suggest how this prior experience may guide the conduct of future preclinical investigations and clinical trials.

PubMed Disclaimer

References

    1. Folkman J. Tumor angiogenesis: therapeutic implications. New Engl J Med. 1971;285:1182–1186. - PubMed
    1. Shing Y, Folkman J, Sullivan J, Butterfield R, Murray J, Klagsbrun M. Heparin-afinity purification of a tumor-derived capillary endothelial cell growth factor. Science. 1984;223:1296–1299. - PubMed
    1. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science. 1992;257:1401–1403. - PubMed
    1. Baffour R, Berman J, Garb JL, Rhee SW, Kaufman J, Friedmann P. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J Vasc Surg. 1992;16:181–191. - PubMed
    1. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest. 1994;93:662–670. - PMC - PubMed

Publication types

MeSH terms

Substances