Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;48(46):8679-82.
doi: 10.1002/anie.200904715.

The mechanism and an improved asymmetric allylboration of ketones catalyzed by chiral biphenols

Affiliations

The mechanism and an improved asymmetric allylboration of ketones catalyzed by chiral biphenols

David S Barnett et al. Angew Chem Int Ed Engl. 2009.

Abstract

A mechanistic study of the enantioselective asymmetric allylboration of ketones with allyldiisopropoxyborane catalyzed by chiral biphenols resulted in the development of improved reaction process. In a ligand exchange process involving the chiral biphenol and the boronate to liberate isopropanol as the key step, addition of isopropanol to the reaction was found to increase the overall rate and enantioselectivity. In the design of an improved reaction, a boronate possessing a tethered alcohol would more readily liberate catalyst at the end of a reaction. The use of allyldioxaborinane with 2 mol% (S)-3,3′-Br2-BINOL and 2 equivalents t-BuOH relative to ketone at room temperature results in high yields and enantioselectivities. Insight gathered from the mechanistic investigation resulted in the development of a reaction process that uses less catalyst (from 15 mol% to 2 mol%) at warmer temperatures (from -35 °C to room temperature).

PubMed Disclaimer

Figures

Figure 1
Figure 1. Effect of isopropanol on rate and enantioselectivity[a]
[a] Reactions were run with 0.075 mmol 1, 1.5 mmol boronate 2, and 0.75 mmol acetophenone in PhCH3 (0.25 M) for 15 h under Ar at RT, followed by flash chromatography on silica gel. Enantiomeric ratios were determined by chiral HPLC methods.
Figure 2
Figure 2. Effect of t-butanol on rate and enantioselectivity[a]
[a] Reactions were run with 0.15 mmol 1, 1.5 mmol boronate 9, and 0.75 mmol acetophenone in PhCH3 (0.3 M) for 15 h under Ar, followed by flash chromatography on silica gel. Enantiomeric ratios were determined by chiral HPLC methods.
Scheme 1
Scheme 1. Proposed Catalytic Cycle for Asymmetric Allylboration Reaction Catalyzed by Chiral Biphenols
Scheme 2
Scheme 2. Asymmetric crotylboration of acetophenone

References

    1. Roush WR. In: Comprehensive Organic Synthesis. Trost BA, Fleming I, editors. Vol. 2. Permagon Press; Oxford, U.K.: 1991.
    2. Chemler SR, Roush WR. In: Modern Carbonyl Chemistry. Otera J, editor. Wiley-VCH; Weinheim: 2000. p. 403. Chapter 11.
    3. Denmark SE, Almstead NG. In: Modern Carbonyl Chemistry. Otera J, editor. Wiley-VCH; Weinheim: 2000. p. 299. Chapter 10.
    4. Kennedy JWJ, Hall DG. In: Boronic Acids. Hall DG, editor. Wiley-VCH; Weinheim: 2005. p. 241. Chapter 6.
    1. For examples of asymmetric ketone allylations in total synthesis, see: Nielsen DK, Nielsen LL, Jones SB, Toll L, Asplund MC, Castle SL. J Org Chem. 2009;74:1187.Li F, Tartakoff SS, Castle SL. J Am Chem Soc. 2009;131:6674.

    1. Asymmetric catalytic ketone allylations: Casolari S, D'Addario D, Tagliavini E. Org Lett. 1999;1:1061.Hanawa H, Kii S, Maruoka K. Adv Synth Catal. 2001;343:57.Cunningham A, Woodward S. Synlett. 2002:43.Cunningham A, Mokal-Parekh V, Wilson C, Woodward S. Org Biomol Chem. 2004;2:741.Wada R, Oisaki K, Kanai M, Shibasaki M. J Am Chem Soc. 2004;126:8910.Teo YC, Goh JD, Loh TP. Org Lett. 2005;7:2743.Lu J, Hong ML, Ji SJ, Teo YC, Loh TP. Chem Commun. 2005:4217.Wadamoto M, Yamamoto H. J Am Chem Soc. 2005;127:14556.Zhang X, Chen D, Liu X, Feng X. J Org Chem. 2007;72:5227.Miller JJ, Sigman MS. J Am Chem Soc. 2007;129:2752.Schneider U, Ueno M, Kobayashi S. J Am Chem Soc. 2008;130:13824.Itoh J, Han SB, Krische MJ. Angew Chem. 2009;121:6431.Angew Chem Int Ed. 2009;48:6313.Yazaki R, Kumagai N, Shibasaki M. J Am Chem Soc. 2009;131:3195.

    1. Lou S, Moquist PN, Schaus SE. J Am Chem Soc. 2006;128:12660. - PubMed
    1. Saaby S, Bella M, Jørgensen KA. J Am Chem Soc. 2004;126:8120. - PubMed
    2. Shirakawa S, Yamamoto K, Kitamura M, Ooi T, Maruoka K. Angew Chem. 2005;117:631. - PubMed
    3. Angew Chem, Int Ed. 2005;44:625. - PubMed
    4. Kitamura M, Shirakawa S, Maruoka K. Angew Chem. 2005;117:1573. - PubMed
    5. Angew Chem, Int Ed. 2005;44:1549. - PubMed
    6. Terada M, Machioka K, Sorimachi K. Angew Chem. 2006;118:2312. - PubMed
    7. Angew Chem, Int Ed. 2006;45:2254. - PubMed
    8. Rueping M, Antonchick AP, Theissmann T. Angew Chem. 2006;118:6903. - PubMed
    9. Angew Chem, Int Ed. 2006;45:6751. - PubMed
    10. Pan SC, Zhou J, List B. Angew Chem. 2007;119:3028. - PubMed
    11. Angew Chem, Int Ed. 2007;46:612. - PubMed
    12. Liu TY, Cui HL, Long J, Li BJ, Wu Y, Ding LS, Chen YC. J Am Chem Soc. 2007;129:1878. - PubMed
    13. Guo QX, Liu H, Guo C, Luo SW, Gong LZ. J Am Chem Soc. 2007;129:3790. - PubMed
    14. Terada M, Machioka K, Sorimachi K. J Am Chem Soc. 2007;129:10336. - PubMed
    15. Rueping M, Theissmann T, Kuenkel A, Koenigs RM. Angew Chem. 2008;120:6903. - PubMed
    16. Angew Chem, Int Ed. 2008;47:6798. - PubMed
    17. Cheon CH, Yamamoto H. J Am Chem Soc. 2008;130:9246. - PMC - PubMed

Publication types

LinkOut - more resources