Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways
- PMID: 19818019
- DOI: 10.1111/j.1365-2958.2009.06905.x
Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways
Abstract
Although many nitroaromatic compounds have been in nature for only a few decades, bacteria have already evolved the ability to metabolize them. Both horizontal transfer of genes and mutagenesis induced under stressful conditions might facilitate evolution of new catabolic pathways. Nitrotoluene degradation pathways are supposedly derived from an ancestral naphthalene degradation pathway. The 2-nitrotoluene degradation genes in Acidovorax sp. strain JS42 are controlled by the transcriptional activator NtdR, which differs from NagR, the activator of the naphthalene degradation operon in Ralstonia sp. strain U2, by only five amino acids. Both regulators respond to salicylate, an intermediate of naphthalene degradation, but NtdR also recognizes a wide range of nitroaromatic compounds. In this issue of Molecular Microbiology, Ju et al. present results of site-directed mutagenesis of NtdR and NagR and show how the nitrotoluene-responsive regulator NtdR can be generated from a NagR-like ancestor by only a few mutations. The reconstructed hypothetical pathway for the evolution of NtdR from NagR demonstrates stepwise broadening of the effector range of the evolving protein without loss of the original activity. These results provide strong evidence for the idea that promiscuity of proteins is an important step in the evolution of new functions.
Comment on
-
Reconstructing the evolutionary history of nitrotoluene detection in the transcriptional regulator NtdR.Mol Microbiol. 2009 Nov;74(4):826-43. doi: 10.1111/j.1365-2958.2009.06904.x. Epub 2009 Oct 22. Mol Microbiol. 2009. PMID: 19849778 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
