Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 5;183(1):49-56.
doi: 10.1016/j.cbi.2009.10.001.

Retrorsine, but not monocrotaline, is a mechanism-based inactivator of P450 3A4

Affiliations

Retrorsine, but not monocrotaline, is a mechanism-based inactivator of P450 3A4

Jieyu Dai et al. Chem Biol Interact. .

Abstract

Retrorsine (RTS) and monocrotaline (MCT) cause severe toxicities via P450-mediated metabolic activation. The screening of mechanism-based inhibitors showed RTS inactivated 3A4 in the presence of NADPH. Unlike RTS, MCT failed to inhibit P450 3A4 and other enzymes tested. Further studies showed the loss of P450 3A4 activity occurred in a time- and concentration-dependent way, which was not recovered after dialysis. Dextromethorphan, a P450 3A4 substrate, protected the enzyme from the inactivation. Exogenous nucleophile glutathione (GSH) and reactive oxygen species scavengers catalase and superoxide dismutase did not protect P450 3A4 from the inactivation. GSH trapping experiments showed both P450 3A4 and 2C19 converted RTS and MCT to the corresponding electrophilic metabolites which could be trapped by GSH to form 7-GSH-DHP conjugate. We conclude that RTS and MCT are metabolically activated by P450 3A4 and 2C19, and that RTS, but not MCT, is a mechanism-based inactivator of P450 3A4.

PubMed Disclaimer

MeSH terms