Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Dec 22;302(4):739-48.
doi: 10.1002/cne.903020406.

Plasticity of GABA- and glutamate-containing terminals in the mouse thalamic ventrobasal complex deprived of vibrissal afferents: an immunogold-electron microscopic study

Affiliations

Plasticity of GABA- and glutamate-containing terminals in the mouse thalamic ventrobasal complex deprived of vibrissal afferents: an immunogold-electron microscopic study

J Hámori et al. J Comp Neurol. .

Abstract

GABA and glutamate immunogold staining demonstrated that nerve cells of the thalamic ventrobasal complex (VB) of mice were positive exclusively for glutamate. None of the neuronal perikarya reacted the GABA antibody. By using alternate thin sections of the normal VB, it was also shown that large "specific" somatosensory and small corticothalamic terminals, both of which contained spherical synaptic vesicles, exhibited only glutamate-like immunoreactivity. A third axonal type, containing flat-ovoid synaptic vesicles, stained only for GABA. Seventy-five days after coagulation of the vibrissal follicles in newborn mice, a characteristic multiplication of GABA positive axon terminals was observed. In addition, it was demonstrated that, similarly to modified cortical endings (Hámori et al., J. Comp. Neurol. 254:166-183, '86), many GABA positive terminals appeared as specific afferent endings, replacing the missing "specific" vibrissal afferents. This finding shows a remarkable plasticity of inhibitory GABA axons during developmental synaptogenesis and provides further evidence that the size, location, and the type of attachment of presynaptic terminals are dependent on their postsynaptic target.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources