Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2009 Jul;4(7):610-3.
doi: 10.1104/pp.108.124404. Epub 2009 Jul 28.

Biphasic ethylene production during the hypersensitive response in Arabidopsis: a window into defense priming mechanisms?

Affiliations
Comment

Biphasic ethylene production during the hypersensitive response in Arabidopsis: a window into defense priming mechanisms?

Luis A J Mur et al. Plant Signal Behav. 2009 Jul.

Abstract

The hypersensitive response (HR) is a cell death phenomenon associated with localized resistance to pathogens. Biphasic patterns in the generation of H(2)O(2), salicylic acid and ethylene have been observed in tobacco during the early stages of the HR. These biphasic models reflect an initial elicitation by pathogen-associated molecular patterns followed by a second phase, induced by pathogen-encoded avirulence gene products. The first phase has been proposed to potentiate the second, to increase the efficacy of plant resistance to disease. This potentiation is comparable to the "priming" of plant defenses which is seen when plants display systemic resistance to disease. The events regulating the generation of the biphasic wave, or priming, remains obscure, however recently we demonstrated a key role for nitric oxide in this process in a HR occurring in tobacco. Here we use laser photoacoustic detection to demonstrate that biphasic ethylene production also occurs during a HR occurring in Arabidopsis. We suggest that ethylene emanation during the HR represents a ready means of visualising biphasic events during the HR and that exploiting the genomic resources offered by this model species will facilitate the development of a mechanistic understanding of potentiating/priming processes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Patterns of defense signal generation during the Pseudomonas syringae pv. phaseolicola elicited-hypersensitive response in tobacco (Nicotiana tabacum). Generation of (A) H2O2 (●, Mur18); (B) nitric oxide (◇; Mur (C) salicylic acid (SA, ■19) and (D) ethylene (○ Mur9) during a HR elicited by Pseudomonas syringae pv. phaseolicola (Psph) in tobacco cv. Samsun NN. In (A) a phase where SA acts to augment the second rise in H2O2—the potentiation phase—is highlighted. The potentiation phase is likely to be similar to defense “priming”. Methodological details are contained within the appropriate references. (E) A possible model for biphasic defense signal regulation during the Psph-elicited HR in tobacco. During an initial phase NO and H2O2 act to initiate SA biosynthesis, where SA and NO act to initiate a “H2O2 biphasic switch”. This could initially suppress both SA and the H2O2 generation but subsequently acts to potentiate a second phase of H2O2 generation. This in turn increases SA biosynthesis which could act with NO to initiate the “C2H4 biphasic switch” to potentiate ethylene production. These (and other) signals contribute to initiation of the HR and SAR.
Figure 2
Figure 2
Ethylene in the Pseudomonas syringae pv. tomato elicited-hypersensitive response in Arabidopsis thaliana. (A) Ethylene production from 5 week old short day (8 h light 100 µmol.m2.sec−1) grown Arabidopsis rosette leaves which were vacuum infiltrated with bacterial suspensions (2 × 106 colony forming units.ml−1) of Pseudomonas syringae pv. tomato (Pst) strains detected using laser photoacoustic detection (LAPD). Experimental details of the ethylene detection by LAPD are detailed in Mur et al. The intercellular spaces in leaves were infiltrated with the HR-eliciting strain Pst avrRpm1, (■), the virulent strain Pst (△) or the non-virulent and non-HR eliciting derivative, Pst hrpA (◇). (B) The appearance of Arabidopsis Col-0 and etr1-1 leaves at various h following injection with 2 × 106 c.f.u.mL−1 with of Pst avrRpm1. (C) Explants (1 cm diameter discs) from Arabidopsis leaf areas infiltrated with suspensions of Pst avrRpm1 were placed in a 1.5 cm diameter well, bathed in 1 mL de-ionized H2O. Changes in the conductivity of the bathing solution, as an indicator of electrolyte leakage from either wild type Col-0 (◆), mutants which were compromised in ethylene signaling; etr1-1 (□), ein2-2 (▲) or which overproduced ethylene; eto2-1 (●) were measured using a conductivity meter. Methodological details are set out in Mur et al.

Comment on

References

    1. Mur LAJ, Kenton P, Lloyd AJ, Ougham H, Prats E. The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot. 2008;59:501–520. - PubMed
    1. Levine A, Tenhaken R, Dixon R, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994;79:583–593. - PubMed
    1. Mur LAJ, Carver TLW, Prats E. NO way to live; the various roles of nitric oxide in plant-pathogen interactions. J Exp Bot. 2006;57:489–505. - PubMed
    1. Parker JE. Plant recognition of microbial patterns. Trends Plant Sci. 2003;8:245–247. - PubMed
    1. Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Ann Rev Plant Physiol Plant Mol Biol. 1997;48:251–275. - PubMed

LinkOut - more resources